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On Homometric Sets. I. Some General Theorems

By R. K. BuLroven*
The School of Chemistry, The University, Leeds, 2, England

(Received 20 October 1959 and in revised form 24 February 1960)

Hosemann & Bagchi (1954) have shown that it is possible to generate homometric point sets from
subscts of points. Their theorem is here sharpened and a series of analogous and related theorems
arc given. The theorems are illustrated by several examples, and the propertics of one of these are
such as to merit a speeial mvoshgatlon of this type of homometric pair. Some very general pairs are
so discovered, and from these it is possible to derive explieitly sets of homometric 7-tuplets (r > 2).
Various preliminary definitions and theorems are given as a basis for later work.

Some definitions

The existence of pairs of point sets which have the
same weighted vector set has been demonstrated by
Pauling & Shappell (1930), by Patterson (1939, 1944),
by Hosemann & Bagchi (1954) and by other workers.
Patterson (1944) was the first to demonstrate the
existence of triplets, quadruplets, etc. of distinct
point sets which yicld the same weighted vector sct;
he calls such pairs, triplets, etec. homometric pairs,
triplets, etc. and this name is now generally accepted.
In this series of papers I shall call any set which,
together with one or more different sets, forms a
homometric pair, triplet, etc. a homometric set (h.s.).
Before giving anything like a formal definition of a

, however, it is nccessary to develop some pre-
liminaries. Some of the terminology of Number Theory
is useful in the investigation of h.s. and I shall there-
fore use the general reference (H-W., ) to indicate
page n of Hardy & Wright (1954) in all papers of this
series.

The choice of the origin of the coordinates of a point
set is arbitrary and if the set shows no symmetry it
may be chosen for convenience coincident with the
position of one of the N points in the set: the positions
of the remaining members of the point set are then
specified by N —1 coordinate (vector) parameters X;.
In general the weights, z;, of the .V points must also
be specified, but, since in a single set only relative
weights are of interest, one can choose integral z; such
thatt

(20,31,...,2;\‘1-1)21, (l)

where we use (p.gq, ...,t)=d to mean that d is the

highest common divisor of p.q, ..., t (HW. 20).
S=80, X1, ..., Xy 1. AN 1) (2)

20, 21, - -

is then a general point set.

* Now at the Dept. of Mathematies, The College of Science
and Technology, Manchester 1, England.

+ We exclude the case of irrational weights.

The result, gige. of convolutions on sets g1 and g
is defined by

’/1:5 = \gl(y).f/z(X—y)dr, (3)

where dt=dydys. . .dy,, in m-dimensions.* The range
of integration is all of the m-dimensional space, if g
and g» are not periodic, or is the unit of repeat which
can always be taken as unity in each of m dimensions.
We can in principle consider also m-dimensional setx
periodic in g <m dimensions.

Sets of points like § in (2) can be represented by
N m-dimensional §-functions cach of weight z;; periodic
sets are representable by periodic §-functions of period

—
unity. The convolution 818: of two such sets is defined
by (3).
From (3) if 8;=81(—x),

815'1 = \. AS] )dT

\ Sl(x +Z)S1(Z)dT

P
and 8151 is the vector set associated with the point

N
set 81. Obviously S18; is also the vector set associated
with S1. A necessary condition that two sets, Sy and Sa.
be homometric is

_ =
S]Sl = SgSz .

This condition is unfortunately not sufficient. Some
sufficient conditions are decveloped below, notably
Theorems 3-9. It has not proved possible to find useful
conditions which are both necessary and sufficient.

It is necessary to distinguish between three cases in
which S and S: yield the same weighted vector set.
In what follows helow and throughout this whole
series of papers we use the symbol — (H.W. viii) to
denote “implies’: ‘a=b - ¢=d’ is to be read as ‘a equal
to b’ implies c=d: if p -» ¢ and ¢ - r, p = r. We also

* Because of Lemma | we can always use orthogonal axes,



258 ON HOMOMETRIC SETS. 1.
use = to denote ‘does not imply’, the relation con-
trary to > ‘a=h = c=d’ is 1o be read as ‘a cqual
to b does not imply e=d’. Finally if p ¢ and g = p
we write p «rq or g« prif p <y and g <> r, both
p ~rand r s p, so that p e 7.

DerFiNitioNn 1. The set Sy is identical with the set
8y, in symbols S, 2, if Sy is transformed into Se by
simple translation. S) # 82 indicates that S is not
identical with Sa.

Identity is an equivalence relation, for
flexive, N symmetric, S b o N,
transitive, Sz S =8s.

The definition of identity we have adopted is per-
haps a little (lll()llllll)ll\ for it is less stringent than
cquality: Ny = SN =N but =80 -0 S =82 be-

cause of the avhitrary translation pmnmt(‘,d in the
identity relation. If S; =8 and, after translation of
St by ¢, 8;=N2, then we shall write 81 +¢c=48..

it s
AT

re-
and

S

DeriNrriox 2. The =et Sy is enantiomorphic to the
in svmbols Ny~ 8 if Si(x)=Ne( —x), that ix
. S~ 82 means that S i= not enantiomorphic

. s we shall
define the relation hetween Sy and S as identity and
exclude it from enantiomorphism. Then if S)= 8.,
S~ Nep i S~ Na0 S # N Emmtmmmphl\m s not
an equivalence relation beeause Sy~ Sy, and if S;~ Sy
and So~ 83, then S1=S5;3: but S)~8s -» Sa~ 8.

LS~ Se unless

DeriNitron 3. The set
S, in symbols Sy )

Sy is homometric with the
( Se, if both m (llld Sa vield

the same weighted vector set, iLe. .SI.S
Sp# Se, S~ 8o 81 ) 7 (Se means that S is not homo-
metric to S,

) (s not an equivalence relation: Sy )+ (8 since

set

Si=8: 8 ) (S» Se) (S3-> 81) (S3 since, al-
though A.hl = \';A\’;‘ either 81 =53 or S;~83 or
i) (Shcbut Si) (82 = 82) (S

If 8 then Si) (Sz->Se) (Syr if 81~ 8,

then N, ) (

»S2) (S5 For in the second propo-
=Na82 = S;

sition A\“\'
if Sa~83 S1=
One homometric pair is a member of a family of
egnivalent homometric pairs. For suppose T is a non-
singular affine transformation such that, under T.
x becomes Tx=b+A.x where A is a non-singular
m-dimensional square matrix. By S*=TS we mean
that set which is obtained from S by subjecting eaeh
of the x; to the transformation: X; becoines Tx;=
b+A.x:.
it S

cand if S3, St ~N3: and
s

2, S1=S24¢, where ¢ ix arbitrary,
TSh=T8:+4Tc: S¥ .

Because T ix non-singular, t.e. det A -
a T 1 such that

Then

J¥
or Sf=
0, there exists

T Tx=x

SOME GENERAL

(Birkhoff & MacLane,

THEOREMS

1953). Tt then follows in a

similar way that S¥= ST ISF=TA8F > Si= M.
Thus
S > S¥ S¥ (4)
Similarly since Sy~ «» S;= 8,
Sy~ S ov NF~ ST (5)
Further
TS0 = \ Simsity =T 1
= et A) T\ SUT 1y SUToy = T-ix)de
= l(det A) FSFSF . (6)
Nince det A 2 0, it follows that
s o0 SESF= SERE (7

From (4), (3) and (7) there follows the lemma:
LEyMa 1
Si) (N2 o SEY-( ST

and it is sufficient to consider one homometrie pair
in order to consider the whole family of pairs generated
by the non-singular affine transformations T.

By (6) the operations ™ and T eommute for uni-
modular T: since (6) is true for b=0 and

S
Lemma | holds for the limited enantiomorphism

Si=T8= S‘.’( =, T,

A=diag (= 1.1, ..

s Tm)

in m > 1 dimensions. Tt holds also for the full enantio-
movphism S = TSe=8s(—x) =S, whilst from (6) —
and ~ commute.

Because of Lemma 1 it is convenient to call the whole
family of pairs related by transformations T on
homometric pair. But this does not adequately define
the most general distinet homometric pair. Tt happens
in general that S, ) (82 for a range of values of the
x(W, 2P in S and the corresponding x{?, z? in Ss.
Nor is it neeessary, as Hosemann & Bagchi (1954)
have shown, that the number of points, Ny, in 8,
should be the same as the number, N2, In Sy. How-
ever, the total weight of points in 8¢ and 8: is necex-
sarily the same: for

—

SNy =4

and  we always choose positive weights zi. More

preeisely if (1) ix true for both §; and S,

N1 Ng-1
N N
— ]
[ i=0

where w is an integer >0: and Sz may be normalized
so that
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(), 22, 2

ey ~4\-2_1)=U' .

Now if §1)-( Sz for a range of the x; and z;, then
the correspondence )- ( is specified by parameters
a, b, ..., g defining the coordinates, and parameters
P, ¢, ..., t defining the weights. These parameters are
common to both §; and S2. §) (or S:) is then com-
pletely specified by further constant vectors n{?, nS",
s n® (or n{?, P, .. n®) and constants m{D, miD,
comD (o mP,m®, L, mD) i s < Nysi', 8 < No:
and the n{Y, m{" necessarily differ from the n@®, m®.
It is convenient to call the whole family of corre-
spondences 81 ) ~( Se specified by a,b, ..., 8; p,q,
.., t; one homometric pair and to eall S; and S cach
one homometric set (h.s.).

DeriNtTION 4. Tf

Si=8inM,a, b, ..., 8; mY, p,q, ... 0
Sg:S‘z(n,(;?), a, b, R - m,‘f?'), s @y v ey t)

and Sy ) ~( Sz for some a,b, ..., 8: p,q, ..., ¢; then
St (together with its equivalents T8;) and S. (to-
gether with its equivalents TS.) are each one homo-
metric set, and S, and S: together constitute one
homometrie pair.

In the definition we have adopted there is still a
possible uncertainty. 1f S ) ( T'S where T’ is some
non-singular affine transformation, TS)—( TT'S is
some pair of h.s. for general T. But T’ itself may be
so simple that it could seem unreasonable to call §
and T'S distinet sets. An example is given by Hose-
mann & Bagchi (1954) from a private communication
by Dr Patterson (their Figs. 1 and 2).

Hosemann & Bagchi (HB) have called pairs of sets
of the type of this example ‘pseudohomometric’.
According to their definition two sets &, and S are
pseudohomometric either (a) if TS, ) ~( TS: and S.=
T*Sy with T* a congruence or an enantiomorphism;
or (b) S1) (S: if and only if S; and S. are infinite
(and therefore almost certainly periodic) sets. For our
purposes the distinetion in (6) between infinite and
finite h.s. is unnecessary since, if 8;) (.S2 and S; and
N2 are finite (and therefore non-periodic) sets, the sets
N and 8 can be assigned to a unit cell of a periodic
lattice to give infinite (periodic) sets S, and S, with
the property S;)  {S;. Thus the class of all infinite
periodic sets includes as a sub-class the class of all
finite non-periodic sets: and except for the as-yet-
unexplored case of infinite non-periodic h.s. it is
sufficient to investigate all periodic h.s. in order to
investigate all h.s.

For our purposes the distinction in (a) between
general h.s. 8y related to others Sz by TS;)—( TSq,
and a sub-class of h.s. for which both T8, )—( TS:
and Sp=T*S,, is also unnccessary. According to the
definition of HB(6), S, and S: are congruent if T* is
a combination of translation and rotation. According
to our Definition 1, if T* is a congruence in HB’s
sense, Se= TtS; where TT is a rotation. The defini-
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tion of enantiomorphy given by HB(7) is identical
with our Definition 2: but from (5)

Si~8 & TS ~TS.

s0 that there are no h.s. obeying TS1) (T8, S2=T19,
with T an ecnantiomorphism, However, from HB’s
example after Patterson, HB Figs. 1 and 2, by the
enantiomorphism T they must mean a limited enan-
tiomorphixm (reflection) in m-dimensions of the type

Ti=diag (-1,1, ...
or again
Ti=diag (=1,1, =1, .... 1), m = 3;

), m 2

or indeed any enantiomorphism but the full enantio-
morphisin
T=diag (-1, —1, ..., =1).

By ‘enantiomorphism’ we shall always mean “full
enantiomorphism’: enantiomorphism’s Ti which are
not full we refer to as ‘limited enantiomorphisms’.

The cxample of HB Figs. 1 and 2 means that sets
satisfying TSy ). ( TSz, S2=TiS;, with T a limited
enantiomorphism, exist. In this 2-dimensional example

0 1]
T = [1 0!
and if the reference system is rotated through 45°
(so that both sets are rotated equally relative to the
reference system)
Tt=diag (-1, 1)

in the new system. Patterson has emphasized, in
lecturing on the sets of HB Figs. 1 and 2, that if two
sets Si and 82 satisfy TSy )—( TS: for some T, and
Sz = Ti81, then, despite the simplicity of T1, the fact
that 8; and T1S; have the same vector set is not
trivial. This view accords with that of the author,
for if Se=TiS: we should expect according to (6)

that SggZZTISlSl rather than Sf_zﬁz‘—‘slgl. Indeed,
when S.=TTS, with Tt a rotation we should also

cxpect- S‘_),SE: TTSl g[ rather than Sggzz Slgl.

Thus, if TS1) (TS:2 and Se=T'S with T’ either a
rotation or a limited enantiomorphism, we can still
write within the terms of Definition 3 that S1) ( T'8;.
It is here that uncertainty arises however: for if
T'T’ is the identical transformation (as for the limited
enantiomorphism for example) T'Sy) ( T'T'S: and
T'81 is one of the equivalents of ;) under T'. Never-
theless, because Sy } +( T'S1is a valid relation we treat
81 and T'S) so related as distinct h.s.

Finally, we must remark that if S;)-(S: and
V81 )—( V82 with V a singular affine transformation
then, until we have more information on the point,
we shall treat S, and V.S; as the same h.s.: an example
of h.s. which remain h.s. under V appears in HB
Figs. 2 and 3 (after Patterson). A difficulty associated
with this choice is that it will not in general be clear
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to what family a given h.s. belongs; but Patterson
(1944) has already shown that sets in one dimension
have their counterpart in m>1 dimensions, and that
these sets become 1-dimensional in m( > 1)-dimensions
for particular 1-dimensional sets of parameters. It
would be unreasonable to isolate this set of para-
meters from the more general m-dimensional set. We
shall always count h.s. in m-dimensional space as
distinet from h.s. in m’-dimensional space if m # m/,
however.

By analogy with Definition 4, the definition of dif-
ferent homometric n-tuplets is now obvious unless
there exist n-tuplets which break down into sets of
pairs for some values of the parameters!

Some theorems on the generation of h.s.
from subsets

Hosemann & Bagchi (1954) have provided a very
powerful means of generating h.s. Expressed in our
notation, the relation HRB(10) is the theorem:

If Sl ~ Sz a-nd Ss ~‘S4, then S/?S;;) ( @4, [XJ
The proviso Si~ Sz means that S 8i. The debt
which the theorems of this paper owe to Hosemann
& Bagchi will be apparent from the manner of their
proofs. But HB in fact proved only the theorem:

If 81~ 82 and 83~ 84, then 8183 and 5184 have
the same weighted vector set’ [S].

Whilst the difference between the theorem as asserted
and the theorem as proved seems slight, consider the
one-dimensional sets of unit period containing all
points of equal weight.:

Sy =0, 112, 1/4, 1/2: Ss=
Sy=8s=1/13,

1713, 1712, 5/12, 3.4, 12/13:
114, 7/12, 11/12, 12/13.

81 is not centrosymmetrical so that S; # Si: nor is

S3=S3. Yet it is easily verified that

Si83=8:85=0, 1/12—1/13, 1/13, 1/12, 1/12+1/13, 1,6,
14—1/13, 14, 14+1/13, 1/3, 5/12, 1/2—1/13,
1/2, 124 1/13, 7/12, 2/3, 3/4, 5/6, 11/12, 12/13:

in which again all points are of equal weights.

We therefore take HB’s thecorem in the form of [£]
and our Theorem 3 is then I/ B’s assertion [«] with
some provisos on the subsets—namely that B; -+ 0 for
all h and B3 + 0 for all h, where the Fourier Trans-

form, R, of S is defined below. Since 839, ~ 8185 and

8283 ~ 8194 (since S$184 ~ S1.81= 8:184) we cannot ob-
tain combinations which can hope to generate different
homometric pairs.

We define the Fourier Transform of S(x) (which is
defined for all h for non-periodic sets and for all h
with integral components for periodic sets) by

SOME GENERAL THEOREMNS

R(h) = \ S(x) exp 2ai (h.x)dr

where the region of integration is as for gig. defined

n (3) previously. If ;= Ss such that S;(x)=Sz(x—c¢)
= 8(x)+c¢ ‘

R, (h)=R:(h) exp {—2aih.c},
which we write Ri=Rs. Then Si=82 < By =R- be-

cause of the Fourier Inversion Theorem.
We can now prove Lemma 2.

Lrmma 2: A sufficient condition that @25 S’:S'g
is S2=S3. Providing R;(h) is never zero, a necessary
condition is that Se=S;.

The condition is obviously sufficient, and further

818:= 8185 —» RiRo= RiR3 —~ Ro= R
(since R, # 0) > Se=83.

THEOREM 3: If S; ~ Sz and Sz~ 83, and R; and R»
are never zero then S183)--( S18s.

Since 8183 ~ 8294 the theorem — 8284 ) ( 8181: we
therefore write the full Th. 3 as asserting

51 ~ bz and S3 ~ S;, with Rl, Rz # ()

for all h > S;85~ 8e81) ( SaSs~ 8184 .

Firstly, following Hosemann & Bagchi (1954).

————

(8185) (8185) =

61638183—6161838

A

—~ o~ —

= 8181848, = 51848’17574 = (8154) (571»\5’4) .
We can now prove the theorem prov1dmg Slba # Slbz
and 6183 ~+ $184. By Lemma 2, S1S;;— blS — Sa— Sy
(ﬂlnc(‘: Rl F O) But Ss~S4 Further if S183~S1S4

then S, Sa_SlS4_L§'183, whence, by Lemma 2, 8=
Sl_ S (smce Ra = 0) But 81~ 8.

CoroLvary: If 81, S2 and S; are three point sets
and By + 0, B2 » 0, Rs ~ 0, for all h, then

($18:85) (818285 ) (818285

with (here) )} ( used transitively.
The four sets are a homometric quadruplet.

819285 ) -

TaEOREM 4: If Sy ~ Ss, then S/1§1 ) (S?S’z.
For
1@1 = A@g — RlR)_ = RIRZ s
8181~ 8182 > RiRy= RaRy :

and B1=0— Re= Sa,

contra hyp.

0. Whence in either case 8;=

Taormyt 5: Tf §1) (82 and S5 )—( S, then 8185,

Aslbq, S Ss, Squ, 8183, 8184, SQS'; and SzS:; have the
same weighted vector set.
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For
P
(8183) (S1.83) = 81815383

P

= 81518184 = 851845181 = (5154) (§1_§4) .

The other cases are similar.
In view of Th. 5 with S3= 81, Sa= 8, it is tempting
now to prove that with suitable provisos

Sl ) ( Sz — ASV/l—A§1 ) ( S/l\Sz .
analogous to Th. 4. Certainly, if
Ry =0, @15 §1A\5‘2 > S =8:.

But if @1~§T82 we have Th. 6:

THEOREM 6: If ST@I ~AS/‘TS2 and 81 )--( Sz, and
Ri # 0, Ry # 0 for all h, then S18;1) (818

571-:8'1 ~ S/'l—‘\g‘_’ — S1SIE glgg ) ( S'1S2 (by Th 3)

And because identity is an equivalence relation this
implies . —
S1Sl ) ( S1S€2 .

But because ) ( is not an equivalence relation
élSz ) ( 81S3 4 SU,S'] ~ Spgg SO that SlS1 )-- ( Slsz +>

S’lSl VA ( S]S We therefore have:

THEOREM T7: If Si) (S, and Ry #0 and B2 ~ 0
for all h, then either §1_A\S' ) ( ;S/';g’z, or gl—g'l ) 818,
or SlSl) (AS/]TS, ) ( S;éz w1th } —( used transitively.

If SUS )+( Slb'z, S]AS1~151A52 if
SlSl )7 ( §182, SISIE 818 .

TarorkM 8: If S1) (82, S1 # 81, and B, # 0 for
all h, then S:8: is homometric with each of Sl/—g'l,

Sl Sz and §1 Sz.

8181 )~ 8181 is Th. 4.

o - o -
S1S[ = S1S2 - AS'~_>~ Sll Slle SuSz - S] = Sz

by Lemma 2; ete.
Theorems 7 and 8 together assert that SlSl, S Sl

and one or other of S_lSz or S518: form a homometrie
triplet providing S1# 81, 81 )—(Szand By # 0, B2 # 0
for all h. They may also form a homometric quadruplet
if S1S1)—( 8182 ) —( S18: (transitive )—(). It is im-
possible to obtain more than a homometric quintuplet

from the homometric pair S; and Ss. For we can have
at most

— — — —
Sl S’] ) ( SlSl (E SzSz) ) ( Slsg
(~8i82)) (8182) (882,
where ) - ( is used transitively.

A convenient illustration of Ths. 7 and 8 is provided
by the one-dimensional periodic sct:. containing four
points of equal weight
S1=0,a,1/4,1)2+a; S2=0,a,1/4+a, 1/2;
Si=0,1/2—a, 3/4,1—a; 8:=0,1/2,3/4—a, l —a; (8)

given originally by Patterson (1944).
Tt is easily verified that
Si81=(0, a, 2a, 14, 1/4+a, 1/2, 1/2+a,
3/4+a; 1,2, 2,2,2,1,2,2,2),
S$181=(0, a, 1/4—a, 1/4, 1j/4+a, 1/2—a, 12, 1/2+a,

1/2+42qa,

3/4—a, 3/4, 3/4+a, 1 —a: 4,1,1,1,1,1,2, 1,
L1LL1,

818:=(0, a, 2a, 1/4, ljd+a, 1/4+2a, 1)2, 12+a,
1/2+2a, 3/4, 3/4+2a; 1,3,1,1.2,1,1,3,1,
l 1),

818:=(0, a, l/4—a, 1;4, 1;2, 1j2+a, 3/4—a, 3/4,
3/4+a, 1—a; 2,1, 1, 2, 2,2, 1, 2,1, 2),

and that

SISJ ~ SzSz: Slsl ) ( Su—gl ) ( SuSg ) ( S1Sg
with }—( transitive.
A homometric quintuplet is generated by the two

4-sets

S1=0, 1/13, 4/13, 6/13;  S2=0, 1/13, 3/13, 9/13:

81=0, 7/13, 9/13, 12/13; S2=0, 4/13, 10/13, 12/13;
containing again four points of equal weight. S and
Sz were not mentioned by Patterson explicitly but can

only be his cyclotomic sets for n =13 as we shall show
later.* For these sets

8081 = (0, 1/13, 2/13, 4/13, 5,13, 6/13, 7/13, 8/13, 10/13,
1213; 1,2,1,2,2,2,2, 1,2, 1),

SeS2= (0, 1/13, 2/13, 3/13, 4/13, 5/13, 6/13, 9/13, 10/13,
12/13; 1,2,1,2,2,1,1,2,2,2),

8182 = (0, 1/13, 2/13, 3/13, 4/13, (),1; 6/13, 7/13, 9/13,
1013; 2,2,2,1,2,1,1,2,2, 1),

S18.=(0, 1/13, 3/13, 4/13, 5/13, 6/13, 8/13, 10/13,
11/13,12/13; 2,2,2,2,2,1,1,2,1, 1),

8181=(0, 1/13, 2/13, 3/13, 4/13, 5/13, 6/13, 7/13, 8/13,
9/13, 10/13, 11/13, 12/13; 4,1,1, 1,1, 1, 1, 1,
1,1,1,1,1).

Th.7 is the restricted form of the more general Th.9.

* These sets have been given explicitly by Menzer (1949).
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THeEOREM 9: If S] ), ( 182, Sa) (184, and neither
R1=0, nor Ra=0, nor R3=0, nor R4=0 for some h,

~—~

then either Sfl\Sq) ( 5,84 or 818 Y (8184 or
8:82) (§i84) - ( 8184 () ~ transitive) .
Because of Th. 5 it is sufficient to prove that either
.\’/._‘_;3 # 1;.\\’4 and hﬁ:%'a ~ Sflg'q, or that
‘S/'TS:s“' ‘@4 > AST1\33) ( STH\% .

The proof is identical to that of Th. 6.

A@:;E S1S4 - SsE S4Z Ag/vl_\S;; ~ S1S4 g SaE S'4. If
N]S;‘; ~ S1S4, S/|A\S'3 = S’]gq ) . ( SIS/‘ (h.V Th 3) If
.\', S;;E §1S4, AS/Y;\S;;) ( AS'/1_§1 (b\ Th. 3)

If S1) (82 and Ss) (S, a complete set of sets
generated by the four h.s. is

183, 8184, S, SeiSe, S18s, 8154, 8253, 8284 .
Of these, by Th. 3, 8;83 ) ~( 8183, Si1S2) ( 8184; and
similarly when Sg replaces S;. That they do not
necessarily form a homometric octuplet is already
suggested by Th. Y. Indeed, if

Si=0,a,1/4,1/24a:
S3=0, b, 1/4, 1/2+b:
S3=0,1/2—b, 3/4, 1 -b:

82=0, a, |/4+a, 1/2;

Ss=0,b, 1/4+0, 1/2;

S4=0, 1/2, 3/4—b, 1 —0b;
with b>a . (8')

Si83=(0, a, b, a+b, 1/4, 1/4+a, 1/4+b, 1/2, 112 +a,
1245, 12 +a+b, 3/4+a, 3/4+6; 1,1,1,2,2,
1,1,1,1,1,2 1, 1),

$18i=(0,a,b,a+b, 1/4,1/4+b, 1/d+a+b,1,2,1/2+a,
1/24+b, 1/24+a+b, 3/4, 3/4+a+b:1,2,1, 1,1,
2,1,1,2,1,1, 1, 1),

NoRs=(0,a,b,a+b,1/4, 1/4+a, /d+a+b,1/2,1/2+b,
1/24+a+b, 3l4+a, 3/4+b; 1,1,1,2,1,2,1,2,
27 l, 1’1)’

SiS3=(0, a, 1/4—0b, 1/4, 1/4+a, 1/2—b, 1/24+a—0,
1/2+a, 3/4—b, 3/4, 3/4+a, 1—b, 1+a—b: 2,1,
LL,1L,1L,2,1,01,0,0,1,2),

Si8a=(0, a, 1/4—b, 1/d+a—>b, 1/4, 1/2+4+a—b, 1/2,
12+a, 3/4—0b, 3/4—b+a, 3/4, 1-b, 1 —b+a;
L2, LLLLLL2,0, 1,12 0)

and 8284 ~ 8183, 8285 ~ 8184, 8285 ~ 818;. These three
degenerate relations are actually different from those
suggested by Th. 9, for that theorem suggests degener-

ate relations of the type 8183~ S184 or 8185~ 81S4;

§1 S3 ~ A§1S4 or S1Sg ~ S] S4Z ete. It mavy be trhat Th9

SOME GENERAL
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can be sharpened to assert that if Sp)
S3) -( S4, with Ri, Rs, Rs and Ry # 0, then

(S2 and

bfl\S3 Yy (SiS3) | @4 ) (Si8a() ( transitive).

Equivalently therefore we should have (omitting the
— for convenience)

S283 ) (S2Sa ) (5281) ( SeS4
S:}S]_ ) ( S3S| ) ( S:;Sz ) ( S:}Sz
S4S1 ) ( S4S| ) ”( S4Sz ) ( S4S2 .

However, we have been unable to prove that there
is even a homometric triplet amongst the eight sets
generated by Sy or S and Sz or Sy or S; or Ss. But.
if there is not, the sets must obey a formidable array
of conditions: by Th. 9 we can alwavs choose Ss and

S4 SO that S]S;g )—( S184, leld l)y Th 3 S]S:; ) ( S] S‘;;
&llld AS'] S4 ) ( S] §4. lf now S] S3, S] S4 and S] S3 dl)
not form a trip]et, S] S4 )/( Slgg — SIS4E SIS;; or

— —_ 3
OIII_\' Sl S4 ~ SlSa =

— ~

S18s~ 8183, and by Lemma 2
~~ _— [ =

possible. Similarly, §1.93)4( S1Ss = S18:= 518, We

TN N T TN N

now have @4 =583, $18:= 8183 Since S383= Y45,
we have from Lemma 2, ST&I = S’T@l -» Ri=+ R
By Th. 9 we can also choose S2 so that S/1§3 ) ( @':1
and since by Th. 3 §;;A\S'2) ( ST:;EZ and 673\81 )y ~( ;ng_\ﬁy,
we must have 5:835 S’afg‘g Also AST\S;;, 67233 and JS/]\Sq

form a triplet unless Sfc_,E'_r, VA( .{13'4 - 67;’3 YA 818y
(since Agl/_Ell-E 8185 above). Tf szgb YA S1Sa,

—~

_/'\ — — - TN —N
SzS:gE S1S3 - SzS;]S:;SaE SlS1S3S3 - S1S] = SgSg

(since gg\S;;E S38; and Rz £ 0).

The relations 815, = S282 (with S, ) -( S2) is a pos-
sible one, however, as we prove in Th. 10 below; and
sets obeying A@]Eglgl require only that S1S; be
centro-symmetric.

If there is no triplet amongst the cight sets generated

by Si or Sz and S3 or S3 or Sy or 84, we must have also
(again omitting )

S183) ( S181, S183)  S13, 8153 )-( S,
S2S3) (828, S184 )~ S18a, SeSs) ( SaBa,
SQS;; )— ( SzS4, S1S4 ) ( S2S4;
S?,S:; = §1§4 = Slg;; = ng/;;

S183= 8:8;= 8:8:=85:8:. (9)

It therefore scems likely that Si, Se, S3, Sa, S; and Sa
will generate a triplet in almost all if not all cases
and will generate a quadruplet in most. Indeed, by
relabelling S» as S: in the examples (8) and (8)
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which follow Ths. 8 and 9 the degenerate relation
Aﬁl ~ A@z from (8) becomes ;@15 8282 associated
with the quintuplets obtained from (8'): whilst if the
sets Sy, Sa, S3, S3, Sy and S5 are taken as defined in

(8’) the three degenerate relations S:8;~ 8183 ete.

(i.e. S1S3=828; ete.) are contained in (9). It may
indeed be possible to prove that Si, Ss, ..., Sy to-
gether generate a quintuplet in all cases but the proof
will require much heavier machinery than that devel-
oped so far.

An interesting homometric pair

e show above that one necessary condition that S;
or Sz and S; or S5 or 83 or 84 do not generate a homo-

nmietric triplet is that, with Sy ) ( Se, S181 = 828, We
showed also that a solution of the two relations is
contained in (8) with S. relabelled as S.. We now
show that a more general solution of the pair of
relations 87)  ((Se, S181= 8282, than that contained
in

Il _{S1=(O,a, 1,%"—(1. 1’ 13171)
= Se=(0,a, 3+a,3: 1,1,1,1)

exists. We shall restrict ourselves to points of equal
weight arranged on a lincar lattice. We consider sets
of n+42r points.

TarorEM 10: There exist solutions of

St} { Se, 8181 = 828,

for §1 and S: each containing n+ 27(n >~ 2) points of
equal weight.

The transforms of S; and S» are R; and Rs. We shall
suppose them of the form

Ry— B4 RO
Ry= R+ B
where
RP = RY forall &,
R® + RY for some A .

Thus, 81 ) ~( Sz is not excluded. Because of the prop-
erties of the d-functions representing S) and 8., cor-
responding to R is S{, and corresponding to E{ is
8P, ete »
10 ‘ —
Because of the arbitrary choice of origins of 818

—~
and Sa28»
—_ ~~ ” N .
S181= S28:-- Ri= R} exp 27iha
but because the origin of S\ or S; is arbitrary we can

choose it so that
RP=RY forall b,

where in this context R{P=R{" is a more stringent
condition than R{"= R{" and permits no relative shift
of origin of S{" and S{".

We now choose specifically

n
R =RD = >t (10)

=1

where the Z; are the n roots of #=1. Then R{D=
R =0,% # 0 (modn) and R’ =RP=n, h =0 (mod n).
Here the relation = is one of congruence in the sense
defined by H.W. 49. We shall always follow a con-
gruenee relation with the modulus of that congruence
so that there will be no possibility of confusion with
the identity relation defined earlier. We shall use
a 7 b (mod %) to deny congruence (mod u) between
a and b.

If 8181 =882, then, writing Rf_}’: R® exp 2mikp,
we have

(RP) = (RSP exp 4aih B, h <+ 0 (nodn) (1)
(n+RPF=(n+R,® exp 2aikf)2, h=0 (mod n) (11')

in which the parameter f§ is no longer quite arbitrary
but fixes the relative origins of 8% and S§@. We now
choose

RYP=RP=R, h ¥ 0 (mod n)

so that (10) and (12) together meant
Ri=Riexp —{4mihf}, b =0 (mod n). (12
At the same time we have satisfied

RiR =R:R>, b # 0 (mod n) .
If
RiRi=RoRo, =0 (mod n) .

we must have either A8 =0 (mod 1), A=0 (mod »);
or R=0, h=0 (mod »). The first possibility reappears
later in a discussion of the second possibility. We
therefore choose R=0, h =0 (mod n) and then (11’) is
satisfied also. Furthermore, (11) is of the form

Ri=R3exp —{4aikf}, h=0 (mod n)

providing

2k =0 (mod 1), h=0 (mod n) (12
s0 that

f=m/2n: m=0,1, ..., 2n—1. (13)

We have now satisfied §18, = S8 and R Ry = Ro R,

all h. If AB=0 (mod 1), A =0 (mod »n) we have R{®»=
R® for h=0 (mod n) whether or not R=0: and
Ri=(n+R)= Rz cxp —{2nihf} for =0 (mod »). But
already Ri=Rzexp —{2nikf}, h # 0 (mod =) and
thercfore, if 28=0 (mod 1), S1=8.. If S }—( Sz we
must therefore have m in (13) odd; and, since R is
invariant under multiplication by exp 2=zik/n only the
case m=1 is of interest.

1 (12’) means that the apparent origin of S, is displaced by
(or f+ 4) relative to the origin of S;: the chosen origin of §,
is the same as that of §;, and (12”) makes the two origins
compatible.
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We propose now to choose R in the form R=
R* exp 2niha, where a is real and >0. Then, for
general a, we cannot have 81~ 82 and we have solu-
tions of 8181= 8282, 81)--( Sz, providing onlv that
we can find B* such that

R* + 0, for some A % 0 (mod n)

R* =0, h=0 (mod n) . (14)

A solution for R* obeying (14) for all 4 except
h =0 (mod ns) is

R* = (l'cuf‘) exp 2mikb, 0<b<l,

=1

where the w, are such that the w} form a complete
set. of roots of zs=1. In this case

R*=0, h=0 (mod n)
but
R*=s, h=0 (mod ns);

and if (11') is to be satisfied

hf=0 (mmod 1), h=0 (mod ns)
or
5/2=0 (mod 1) .

Thus, s is even, s=2r: and the w, are of the form

my=CcXp 27iqs/ns =exp siq/nr,
where
q:=0,1, ..., (s—1) (mod )

and constitute a complete set of residues (mod s).

A solution of @15 sz\S‘z, S1 )+ ( Se, is therefore

2r

n
R =X (,E'w{‘) exp 2niha
i1 -1

n
Ry=2X1+

2r
(wa) exp 2mih(a+1/2n); (15)
i=1

t=1
where {¥=1, w¥ =1; 8 and 82 contain n+2r points.
We can illustrate Th. 10 by choosing particular
examples of (15).
(i) n=2, r=1: §1=0,4a, }++a, };
S2=0, 1+a,}, +a

Since Sy~ (0,a, }+a, 3), and S2~ (0, a, §, $+a), this
pair is the pair I1,.

(ii) When n > 4, the ¢; can take on at least two
distinct sets of values, e.g. n=5, r=1;

(@) q:=0,1
S1=0, a, 1/10+a, 1/5, 2/5, 3/5, 4/5 }:: o
Se=0, a, 1/5, 2/5, 3/5, 4/5, 9/10+a ‘
(b) ¢:=0,3

8,=0, a, 1/5, 3/10+a, 2/5, 3/5, 4/5

S2=0, a, 1/5, 2/5,3/5, 7/10+a, 4/5

SOME GENERAL THEOREMS

It is evident that for ¢,=0,5, S;=082; and that
q:=0, n—u is identical with ¢,=0, u. When = is even
there are jn distinct homometric pairs with r=1;
when n is odd there are }(n—1) homometric pairs
with »=1.
(ili) =3, r=2: one example is
Si=0,a,1/12+a, 1/6+a, 1/44+a, 1/3, 2/3:
S2=0,a,1/124a, 1/3,2/3,5/6+a,11/124+a .
But (15) is not the only solution illustrating Th. 10.
The only restriction on R* was

RB*=0,h=0 (mod »n),

and s
R¥*=YR¥=23 <‘Lo){‘ x) exp 2mihbs

K s \=1
Is a possible solution providing the (w:,s)" are the s
distinet s th-roots of unity. The simplest case is s =2r
for each kind s specified by bs: an example is

(iv) n=3,r=1; by=0,ba=b—a;

O<a<lib, 1j13<b<1/2
Si=0,a,1;6+a,1;3,0,1/6+0, 2/3:
S2=0,a,b—-1/6,1:3,0,2/3,5/6+a;

but there can be as many parameters by as we wish.
The condition on R* can also be satisfied by choosing
different weights 2z, for the members of different sub-
sets specified by s: z; must be the same for all members
of the same subset s; z, may be irrational.

We may also have s=2r, for each subset <, where
the ry are distinet. An example is

v) n=38,ri=1,re=2: b1 =0, ba=b—u;
O<a<1/6,1/3<b<bi12
S1=0,a, 1/6+a, 1/3,b,1/1245,1/6+0,
1/44b, 2/3;
Se=0,a,b—1/6,b—1/12, 1/3,6, 1/12+b,
2/3,56+a.

The families of h.s. obeying 81 ) ( Sz, Si81= 882,
are in many respects the simplest possible h.s. Patter-
son (1944) gave the simple generalization of 1.

S1=0,a,1/2n+a, 1/n, 2/n, ..

Se=0,a,1/n,2/n, ..., ..
2n—1)2n+a.

o (m—=1)/n:

3, = - (n=1)/n,

In example (ii) and Th.10 we demonstrated the
existence of closely related pairs

17511:2’

where n*=n for n even and n*=n—1 for n odd. We
shall show also in a later paper that [1; is itself the
only pair of h.s. of four points containing a variable
parameter. It will become clear too that the I7{), are,
to some extent, unusual in that they exist for all
N=(n+2). In a later paper we shall show that the

1=1,2, ..., In¥
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I797, have an invariance property which takes a
simpler form than that associated with any other
families of h.s. we have so far discovered. It would be

—
interesting to know if any solutions of S;81= 8282,
S1) ( Se, exist which are not trivial generalizations
of (15).

Some homometric multiplets

Whilst the condition AS{]\SIEAS':ZAQ*_), on the relation of
S1)-(S2 has proved useful in demonstrating the
structure of certain simple h.s., it is a restrictive con-
dition. If the condition is removed we can demonstrate
the existence of homometric r-tuplets related to (15)
and which seem to be the simplest possible homometric
r-tuplets.

THEOREM 11: There cxist at least in* sets of
homometric »-tuplets of n+r points of equal weight.

AsinTh. 10 we choose By = R{V + R?®: Ra= R\ + RY:
with R{" and R given by (10), and R + R® for
some A, If

RP=R: RP=Rexp 2aihf: 0 (mod n)
then B B
IRy=RsRs, h # 0 (mod n) .
And if _
R1E1 ZRzR'_), h=0 (mod 7L) s

a possible solution is R=0, A =0 (mod n),
If we choose R=R* exp 2alha with

.
R* = (_Sm,") exp 2zihh, O0<b<1:
11

where the o] form a complete set of roots of as=1,
then

R*=0, h=0 (mod n); R*=r, h=0 (mod nr) .
The condition on g is now only that

RB=0 (mod 1), h=0 (mod nr)
so that
f=minr; m=0,1, ...,nr—1.

Since R{V=R{Y is invariant under multiplication by
exp 2ath/n, only r—1 of these values of m, for which
m=1,2, ..., r—1, are distinct.

The expression for the w¢, namely

we=exp 2niq/nr ,

applies, with ¢, =0, 1, ..., (r—1) (mod »), a complete
set of residues (mod 7).
The solution analogous to (15) is

n r
Ri=3C+ <2]w{‘> exp 2niha
; =1

=1
n r
R=30"+ (‘_w?> exp 2mih(a+m/nr)
i-1 =1

265
in which m can adopt the values 1,2, ..., r—1. The
set of sets for which m=0, 1,2, ..., (= 1) constitute
a homometrie r-tuplet of n+r points. The statement

in Th. 11 that there are at least }n* homometric
r-tuplets is hest left to the examples helow.

(vi) n=2, r=3:
Si=0,a, 1;6+a, 1/3+a, 1/2:
So=0,a,1/6+a,1/2, 5/6+a:
Sz=0,a,12,2/34+a,5/6+a.
We shall show in a later paper that this is the only
homometric triplet of five equal points: and that there
are no homometric »-tuplets for r>2 for sets of four
equal points or r-tuplets for »> 3 for five equal points.
Indeed we shall show that there are no homometric
r-tuplets of .V equal points for N <r+2,

(vil) n=3, r=3:
Si=0,a,1,94a, 2/9+a, 1/3, 2:3:
Se=0,a, 1/9+a, 1/3,2/3, 8/9+a:
S3=0,a,13,2/3,794+a,89+a:

or
S1=0,a,1/9+a, 1;3,59+a, 2,3;
Se=0,a, 1;3,4/9+a, 2/3, 8/9+a:
S3=0, 1/3,1/3+a,2/3,7/9+a, 89+a:
or

S1=0,a,2/94+a,1/3, 4/9+a, 2/3:
Se=0,194a, 1/3,1/3+a, 2/3,8:9+a;
S3=0,a,2/9+a, 1/3,2/3,7/9+a.

(viil) n=3,r=4:
We give one member of each of six distinct homo-
metric quadruplets. The other members of one quad-
ruplet are obtained by shifting S@ by 1/nr=1/12
relative to S&
S1=0,a,1/12+a, 1/6+a, 1/4+a, 1/3, 2/3;

or 81=0,a,1/124a,1/6+a,1/3,7/12+a, 2/3:

or 81=0,a,1/12+a,1/4+a, 13, 1/2+a, 2/3;

or 81=0,a,1/124a,1/4+a,1/3,2/3,5/6 +a;

or S1=0,a,1/64+a,1/4+a,1/3,2/3,3/4+a;

or 81=0,a,1/6+4a,1/3,5/12+a,7/12+a, 2/3 .

There is also a degencrate quadruplet which reduces
to the pair

S1=0,a,1/12+a,1/3,1/2+a, 7/12 +a, 2/3:
Se=0,a, 1/3,5/12+a, 1/24a, 2/3,11/124a .

It is evident that for general a there are at least
in* multiplets. For large n, homometric multiplets
can become very abundant. Indeed, much of the
difficulty of the theory of h.s. resides in the enormous
abundance of h.s. for N > about 6. Theorems 3, 4, 6,
7, 8 and 9 together are a prolific source of h.s. That
they are insufficient in themselves to generate all
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possible h.s. from a few subsets of very few points
rests on the following theorem:

TaeEOREM 12: If §= 8182 is a set of NV points for
which (z¢, 21, ..., 25 1)=1 then, if the 2" are the
weights of Ny points in & and the 22 are the weights
of N2 points in Ss,

No1 N =1 Vool
Nz a factor of ( A zf-')) X ( Y zﬁ.‘”) .
{0 je0 / k=0
For
Vo1 Y11 ¥yl
wx Nzp= (_-‘.' 251)) x < ) 2%”) )
i=:0 j—0 / k-0

where w is a positive integer: and we assume without
loss of generality that both

(22)])7 z(l])’ EE) zf\l')l—l) =1
0 2 s
(P, 29, ..., P )=1.
From Th. 12 it follows that if
vo1 Y=
Y 2; is a prime, p, then ¥ 24V
i=0 =0

at least has a factor p.

We may think of h.s. as having factor sets (in
general) from which they can be generated by Ths.
3, 4, 6, 7, 8 and 9. We have not shown of course that
these theorems are the sole source of h.s. from subsets.
However, if §)- (8" and § and 8 contain a common

’filCt()I‘,, SE S1S;] ) ( S];S4 = Sl a-nd
Slgl&gﬁg = Slgl ngq — S;g ) —( S4 or ;S;; ~ Sq

— TN

(since 83 # Sy) providing B1 » 0. But if $182)- ( 838,

we cannot at the moment say anything about the
relationship between 8, Ss, Ss and Si.

We may think of h.s. with no factor sets as "primne

sets’ but there is no guarantee that the decomposition

of h.«. into prime subsets is unique*: we already have

o ar .
many cases for which 8;82= S3S5:. According to Th.3
not all factor sets are h.s. and not all ‘prime’ sets will
be h.s. According to Th. 12 therve is at least one ‘prime’
set associated with each prime p but there are almost
certainly more ‘prime’ sets than primes p for there is
certainly more than one h.s. for which XYz;=p for all
< a
P .
One might ask for all prime sets sufficient to gener-
N1 V-1
ate all huso with Xz, < Z. If insuch prime sets X z5=7,
i 0 io
it is then reasonable to demand Z; < Z for otherwise
it would be necessary to explore a much larger range
of h.s. in order to find a smaller one. Even when Z is
-1
N

— T

i-0

not a prime not all h.s. with Z can be ob-

* The failure of the so called ‘Fundamental Theorem’ is
common to a large number of number ‘fields’ in Number

Theory (H.W. 211),
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tained from prime sets with Z, < Z, for consider N =4

and z;=1 for =0, ..., 3. According to Th. I2
cither Zy=4w or Z,=2uw" and Z.=2uw". If now

Zi1, Z> <4 both ' and «’" are unity, but we show later
that neither of the two pairs of h.s. for which N=+4
and Z=4 can be generated from two subsets of two
points of equal weight. Accordingly the h.s. with
N =4, Z =4 can be generated only by subsets for which
Zi .- 4: it seems probable that the h.s. with N=4,
Z =4 are in fact prime sets.

Whilst Ths. 3-9 are a prolific source of h.s. they are
in some respects too powerful: it is not obvious,
despite possible arguments like those of Ths. 10 and
11, which sets to choose for 8y, 82, S3 or Sy in order
to obtain h.s. with previously specified characteristics
as to number of points, relative weights of points, cte.
Nor do these theorems give any indication whether
they have generated all possible h.s. with given charac-
teristics. Thus it seems proper to adopt for later work
a point of view rather different from that of the
present paper.

Summary

The theorems of this paper are not really suitable for
summary: but as the symbolism of the paper may
appear a little formidable at first sight it seems worth-
while to state in simple terms and very roughly both
the contents of the paper and the ideas behind it.
Hosemann & Bagehi (1954) have already shown
that two homometric sets of points can be built up
from two pairs of subsets in which one set is common
to cach pair and one set of one pair is the enantiomorph
of another in the other. However, sets so built from
subsets are not always homometric: they may be
enantiomorphic or even identical. Conditions on the
subsets are given such that all pairs of sets generated
from the subsets by Hosemann’s & Bagchi's method
are genuinely homometrie, and generalizations of their
theorem are given which enable homometrie sets to
be generated from subsets which are themselves
homometric rather than identical or enantiomorphie.
In ovder to determine all homometrie sets of given
numbers of points of specificied weights (or simply of
given numbers of points) it is necessary to define what
constitutes a single distinguishable homometric pair.
Patterson (1944) has already shown that pairs of sets
can be homometric over a continuous range of values
of certain co-ordinate parameters, and it seems reason-
able to call all pairs differing only in the choice of the
values of these parameters the same homometric pair.
It is shown also (Lemma 1) that if two sets are homo-
metric they remain homometric after being subjected
to the same non-singular affine deformation; and we
therefore call all pairs related by non-singular affine
deformations the same homometric pair. From the
last 1t is necessary to abstract two sets which are
homometric to each other but can be obtained from
each other by a non-singular affine deformation: it is
clearly necessary to treat sets so related as distinet h.s.
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The first part of this paper is therefore concerned
with the definition of a homometric set (h.s). The
second is concerned with the proof of theorems
analogous to that of Hosemann & Bagehi (1954).
Just as in Hosemann’s & Bagchi’s original formulation
of their theorem it is difficult to eliminate the pos-
sibility of generating the same sct or its enantiomorph
from different pairs of subsets. Tt is shown, however,
that if the eight possible h.s. which can be generated
from two pairs of subsets and their enantiomorphs do
not contain a homometric triplet certain very restric-
tive conditions must exist on the subsets. An in-
vestigation of one of these restrictive conditions leads
to the discovery of some interesting genervalizations of
the family of h.s. given for a general number of points
by Patterson (1944). These generalizations of Patter-
son’s pair of sets arc extended further and include
families of multiplets providing the sets contain five
or more points. It is difficult to avoid the conclusion
that h.s. are very abundant when the number of points
in the sets is large and it is surprising that so few have
been reported in practice.

As an indication for further work it is pointed out
{Theorem 12) that not all h.s. of a large number of
points can be generated from subsets containing a
smaller total weight of points. Such sets may be
thought of as having no factor sets and arc analogous
to prime numbers in Number Theory. It is a major
task in the theory of h.s. to caleulate these ‘prime’
sets: but unfortunately this task is likely to prove as
difficult as a central problem of Number Theory
the caleulation of prime numbers.

The literature on h.s. is still small, and at the sug-
gestion of the referce 1 add a comment on several
other papers devoted to h.s. The results obtained by
Patterson (1944) largely supersede Patterson (1939a,b).
Patterson (1944) laid the foundations of a method ot
direct, attack on the determination of h.s. for given
.V which has been extended by Garrido (1951). Since
this method is the one we adopt in later papers of
this series, comment on Garrido’s paper ((7) can more
properly be made in them. However, we may remark
that (’s ‘necessary and sufficient conditions’ are by
no means rigorously necessary. H is not necessary that
two sets be isovectorial in (s sense for them to be
homometriet: they may also have identical co-or-
dinates as Hosemann & Bagehi (1954) Fig. 8 show.

The existence of isovectorial companions of any
particular point set is always accompanied by the
failure of standard methods (c.g. Clastre & Gay,
1950a, b) for solving the Patterson function as Garrido
(1951) shows. This is one reason why isovectorial sets
are not a serious problem to crystallographers when
N is small. One may also remark that sets of the type
of HI¥s Fig. 8 can be climinated when the weights
of the points are a priori known. But h.s. with even

T i.e. the ‘non-existence de structures isoveetorielles’ is not
sufficient for the non-existence of h.s.

the same co-ordinates and the same weights exist; e.g.
consider
Si=(0,1/6, 1/3, 1/2,2/3,5/6: 8,6,4,2,7,9
ASY:]:((J, 1/6’ ]/37 ]2 23’ :),6~ Sy 49 2) 6) 75 9

o
)l.(lb)

The sets of (16) have very special co-ordinates and
it is certain that rearrangement of the z’s become
more difficult for more gencral sets of co-ordinates.
Nevertheless, there remains the possibility that par-
ticular but not so obviously specialized sets of co-or-
dinates exist which permit rearrangement of the z’s.
It is certainly true that the condition S; )—( Sz always
restricts S; and Sz; but in the author’s opinion our
knowledge of this restriction is at present insufficient
for us to conclude with Garrido that the existence of
h.s. necessarily ‘exige des conditions trés speciales qui
seront remplies seulement dans des cas particuliers’.

Earlier work on h.s. (Menzer, 1928; Pauling &
Shappell, 1930; Patterson, 1939a) suggested that h.s.
are necessarily confined to special positions in highly
symmetrical sets, and later work (Patterson, 1944)
still left the suspicion that specific readily identifiable
positions were necessary (c.g. 3/4, 1/4, 1/5 or 1/2—
or 1/N—in one dimension). But even this last con-
dition is unnecessary: consider the 7 point periodic
h.s. of equal weight

S1=0, a, ba+4d, 1/4+5a+5d, 1;4+6a+dd,
124 6a+6d, 3/4++3a+3d;

So=0, a, 1/4+a+d, 1i44+2a+d, 1;446a+5d,
124 6a+6d, 3:44+3a+3d;

and try (say) a = 2,100, d =] 3/100.

For these reasons an attack on h.s. by consideration
of special points and symmetries (Patterson, 1939a:
Menzer, 1949), of great interest in itself, is likely to be
too restricted. Symmetry is a restrictive condition on
h.s.s e.g. the sets Iy of (8) are hus. in pm if, and only
if, « =1:8; and we show later that these h.s. are the
only h.s. of 4 points of equal weight in pm. If S is
a h.s. with N= P, the condition that 8 contains
P sets of @ equivalent points introduces at most
P(@—1) relations between cach of the N weights and
N —1 co-ordinates. But sets with different symmetries
can be homometric (Garrido, 1951; Hosemann &
Bagehi, 1954) and it is probable that the requirement
of P sets of @ equivalent points reduces the total
number of parameters by less than 2P(Q—1).F

There can certainly be more h.s. with P sets of
Q(>1) equivalent points than with P points, for c.g.
there are no h.s. of 2 points in pI but there is one in

1 The evidence is still inadequate. We suggest later that
h.s. with no symmetry contain at most N—3 co-ordinate
parameters and (when N >05) N—2 weight parameters: in
T} one and only one pair of h.s. (and these with only one co-
ordinate parameter) exists for ¥ =24. The set I1, in pl has
one co-ordinate parameter and in general three weight para-
meters: in pm with a=] there are no co-ordinate and two
weight parameters.
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pm with 2 sets of 2 equivalent points. Thus when P
is the number of sets of equivalent points, increasing
P to P+1 probably increases the number of h.s.
more rapidly than does the increase of N to N +1 in
sets of no symmetry; and it is even possible that the
number of h.s. for given N is asymptotically inde-
pendent of symmetry.

Nevertheless, high symmetry imposes a severe re-
striction on h.s. with small P as the existence of
apparently only one pair of h.s. for N =24 in 7] — [a3
shows (Pauling & Shappell, 1930; Menzer, 1949;
Garrido, 1951): as a sccond example we may add
here that there are no h.s. for N =8 in P2,/c (Bullough,
1957). The fact that h.s. were first discovered in highly
symmetrical sets is evidence not that h.s. are asso-
ciated with high symmetry but that h.s. become
abundant when N is large.

Menzer’s (1949) conclusion that the introduction of
atoms of different weight in systems of high symmetry
reduces the number of h.s. helow the number for one
set of equivalent points is misleading for it relies on
the ability to distinguish betwcen peak shapes as
well as peak weights. In general the condition 2{"=
2@ =z for all i=1, ..., N members of two point sets
restricts h.s., and homometric pairs with this property
are a subclass of the more general class of homometric
pairs without it.

From the evidence at present available the author
cannot agree with Menzer (1949) and Garrido (1951)
that h.s. are necessarily rare although homometric
alternatives are fairly easy to detect when N is small.
It is by no means obvious that this will continue to be
s0 when N ~30 (say): the number of h.s. is probably
much smaller than the number of possible sets; but it
offers small consolation to crystallographers that the
number of h.s. is probably ‘cnumerable’ (in the tech-
nical sense, i.e. it has the cardinal number of the
integers; because h.s. exist for a continuous range of
coordinate parameters, the number of these sets is not
enumerable) whilst the number of possible sets has the
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number of the continuum. If vector point sets are given
with a small error in the vector co-ordinates it scems
probable that for large enough N there will always
exist a pair of h.s. with a vector set within the error
of that of the given set. For this reason a real upper
limit probably exists on the usefulness of the Patter-
son function (or of X-ray data unsupported by other
evidence)—although this limit is probably beyond the
point where overlap of finite peak widths already
restricts the use of that function. In this series of
papers we investigate h.s. as a problem of interest in
its own right ; but a reliable estimate of the importance
of h.s. to crystallographers can only he obtained from
greater knowledge of the properties of h.s.

[ am indebted to the University of Lecds for a
Fellowship during the tenure of which the bulk of thix
work was done. I am also indebted to the British
Rayon Research Association for facilities to complete
this paper.
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