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Hosemalnl  & Bag(.hi (1954) have shown tha t  it is possible t(> generate homometric point  sets from 
subsets of points.  Their  theorem is here sharpened an(t a series of analogous and related theorems 
are given. The theorelns are i lhmtrated by several examples, and the properties of one of these arc 
such as to merit, a special investigation of this type of homometric  pair. Some very general pairs are 
so discovered, and from these it is possible to derive explicit ly sets of holnometric r-rut)lets (r > 2). 
Various prel iminary (lefiniti(ms and theorems are given as a basis for later work. 

S o m e  def in i t ions  

The, exis tence  of pairs  of point  sets which have  the  
same weigh ted  vec tor  set  has  bccn d e m o n s t r a t e d  by  
Paul ing  & Shappel l  (1930), by  Pa t t e r s (m (1939, 1944), 
I)y H o s e m a n n  & Bagch i  (1954) and  by  o ther  workers.  
Pa t t e r son  (1944) was the  f i rs t  to d e m o n s t r a t e  the  
exis tence  of t r ip le t s ,  quadrup le t s ,  etc. of d i s t inc t  
p<>int sets which y ie ld  the  same weigh ted  vector  se t ;  
he calls such pairs ,  t r ip le ts ,  etc. homomet r i c  pairs,  
t r ip le ts ,  etc. and  th i s  n a m e  is now genera l ly  accepted.  
In  th is  series of papers  I shal l  call a n y  set  which,  
toge the r  wi th  one or more d i f fe ren t  sets, forms a 
homomet r i c  pair ,  t r ip le t ,  etc. a homomet r i c  set (h.s.). 
Before g iv ing  a n y t h i n g  l ike a fo rmal  def in i t ion  of a 
h.s., however ,  i t  is necessary  t(> develop s<>me pre- 
l iminaries .  Some of the  t e rmino logy  of Numt)er  Theory  
is useful  in the  inves t iga t ion  of h.s. a n d  I shall  there-  
fore use the  genera l  reference (H.W. ,  n) to ind ica te  
page n of H a r d y  & W r i g h t  (1954) in all papers  of th i s  
series. 

The  choice of the  origin of the  coordina tes  of a po in t  
set  is a r b i t r a r y  and  if the  set  shows no s y m m e t r y  i t  
m a y  be chosen for convenience  coinc ident  w i th  the  
posi t ion of one of the  N poin t s  in the  set :  the  positi<ms 
of the  r e m a i n i n g  members  of the  po in t  set  are then  
specified t)y N - 1  coord ina te  (vector) pa ra lne te r s  x~. 
In genera l  the  weights ,  zi, of the  N poin ts  mus t  also 
t)e specified, but ,  since in a single set  on ly  re la t ive  
weights  are of in teres t ,  <me can choose in tegra l  z,: such 
t hatj" 

(z0, z, . . . . .  ZN,- l )= 1 , (i)  

where we use (p, q . . . . .  t ) = d  t() m c a n  tha t  d is the  
h ighes t  common divisor  of p, q, . . . ,  t (H.W.  20). 

S ~---S((}, i t ,  . . . ,  x . \ -  l :  z0, Zl,  . . . ,  ZN l) (2 )  

is then  a general  po in t  set. 

* Now at the Dept. of Mathemati('s, The ('.()liege of S('ien('c 
and Technology, Manchester i, Enghmd. 

We exclude the case of irrational weights. 

The  resul t ,  gig2, of convolu t ions  ()n sets g~ and  .q-_, 
is defined ))y 

gig.,_= g t ( y ) g 2 ( x -  y ) d r  , (3) 
) 

where dr  = d y l d y 2 . . . d y , ,  in m-dimensions .*  The  range  
of i n t eg ra t ion  is all of the  m-dimens iona l  space, if g~ 
and  g2 are not  periodic,  or is the  un i t  of r epea t  which 
can a lways  be t a k e n  as rari ty in each of m dimensions .  
We  can in pr inciple  consider  also m-dimensional  sets 
periodic in q < m dimensions .  

Sets of points  like S in (2) can be represen ted  by 
:\" m-dimensi<mal 5-funct ions each of weight  z~; periodic 
sets are represen tab le  by periodic 5-funct ions of period 

un i ty .  The convolu t ion  SIS.,_ of two such sets is defined 
I>v (3). 

F rom (3) if ~1  = ~-~l( - -  X) ,  

S1S'I = S l ( y ) N l ( y - x ) d r  

= S l (x  + z)S1(z)dT 

a.nd S1Sl is the  vector  set. associated with the  t)oinl 

set  $1. Obvious ly  $1S1 is also the  vector  set, associa ted 
wi th  ,~t. A necessary  condi t ion tha t  two sets, S~ and  So_. 
be homomet r i e  is 

& $1 = $2S.~ . 

This  condi t ion  is u n f o r t u n a t e l y  not  sufficient .  Some 
suff icient  condi t ions  are developed below, n o t a b l y  
Theorems  3-9.  I t  has  no t  p roved  possible to f ind useful 
condi t ions  which are bo th  necessary  and  suff icient .  

I t  is necessary  to d i s t ingu i sh  be tween  th ree  eases in 
which Nt and  S,.,. y ie ld  the  same weigh ted  vec tor  set.. 
In  w h a t  follows below and  t h r o u g h o u t  th i s  whole 
series of papers  we use the  symbol  -+ (H.W.  viii) to 
denote  "implies ' :  "a=b ~ c = d '  is to be read as 'a equal  
to b' implies  c = d :  if p -+ q and  q .--> r, p ~-- r. We also 

* Because of Lemma I we can always use orthogonal axes. 
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use ~ t o  deno te  'does not  imp ly ' ,  the  re la t ion  e o n -  

t r a r y  to , :  a = h - >  c = d '  is to be read as 'a equal  
to /J does not imp ly  c=d ' .  F i n a l l y  if p *q a n d  q - = - p  
we ~w'ite p ,-> q or q ~-> #:  if p , ~ q and  q ~.~ r, both 
p - / '  and r * p, st) t h a t  :/) ~-~ ,'. 

DEFINITION i. The  set Nt is ident ica l  with the  set 
S._,, in symho l s  Nt =S. , ,  if A't is t r an s fo rmed  iuto Ne by 
s imple  t.ranslalicm. Nl #N.2 indi( .ates tha l  A'I is not  
iden l iea l  wi th  N._,. 

I d e n t i t y  is an  e( luivale ,we velali(m, for il is r'e- 
f h , x i v e ,  ,% =,~,'t : sy lnn , . l v i c .  ,% --S._, , , , % = , % :  a im 
t r ans i t ive ,  ,~'1 ~ N e .  N . , = N a  , N i  =- -Na.  

The clef]nil]on of i d e n t i t y  we have  adop ted  is per- 
liaps at l i t t le  a n o n m h m s  for it is less s l r ingen t  t h a n  
equ ; t l i ly :  N1 =N., - N, =~N._> hut  Ni ~_N-, .+ Nl :N- ,  I)e- 
cause of the  a r h i t r a r v  I r ansh t l i on  permit : ted in the  
]dent]t,," rehttion, if  ,S', _=_ A'e and ,  a f le r  l r ansh t l i on  of 
,~,'z b y  c ,  N t = , % ,  then  we shall  write S t + c = & , .  

i)EI"INI'PI(IN 2. The  sel '~'1 iS, e n a n l i o m o r p h i e  to the  
set S.,, in sy lnbols  b,'~ ~S._, if & ( x ) - - , % ( - x ) ,  t ha t  is 
N1 ~ *q;2. Nt ~ ~'2 l l leil l lS t h a t  '~'1 is I1()| e i la l l t . . iOl l lorphic '  
t o  ,b'e. 

[f Nt -~ ,%'e. Nt ~ ,*,'e unless  ,%'e -~ ,k,'.> : if ,>'e -- *q'._, we shall  
def ine  the  re la t ion  he lween  ,"s't and  S._, as i d e n t i t y  and  
exc lude  it from e rmnl iomorph i sn l .  Then  if Nj_=Se, 
N , - S e ;  if St ~Ne, S~ ~ , % .  E n a n t i o n i o r p h i s m  is not 
an  equivahmc.e re la t ion  because ,~,'t ~ S~, and  if S~ ~ N._, 
and  N., .-, Na. t hen  S, = N a :  hul gi ~N._> -> N,_> - & .  

i)EFINITI(iN ;{. Tile set St is h o m o m e t r i v  with the 
set Ne, in symbo l s  Sz ) ( N.,, if both  N~ and  N._, yield 

/---.._ ...--._ 
the same  weighted veetor  set, i.e. NiNi =NeNe, and  
,gt ~lg N.,, N1 ~ N2. S, ) / ( N._, irleallS I hal. N1 is licit homo- 
i i iet rie t o  S.>. 

) ( is ]lOt an  eqiiivalellCe rela t iol l :  ,S't ) ¢ (  *%'i siliee 
S i - - N l :  ,S'l) (N.,, S,_,) ( ,%- - , ,S '~ )  ( ,% since, al- 

Q -"-'2- 
t h o u g h  NiA't=N:~Sa, e i ther  N t ~ N a .  or Nj-,-N:l, or 
St ) (Na: but  Nt ) ( Se - $2 ) ( St. 

If Sl__,%, t hen  S t )  ( S a - * S e )  ( & t :  if S t o N e ,  
then  St ) ( Na , N., ) ( Sa. For  in the  second propo- 

s i t ion  NiSl = N.zS., = N:lSa : and  if S.,_= Sa, Si ~ Na: and  
if Se ~ Na, S~ _~ S:~. 

Oue hon lome t r i e  pai r  is a I n e l n h e r  o f  a f a l l l i l v  o f  

e q u i w d e n t  h o n m m e t r i e  pairs. Fo r  suppose  T is a non-  
s i ngu l a r  aff ine t r a n s f o r m a t i o n  such tha t ,  unde r  T. 
x beeomes T x = b + A . x  where A is a non-s ing t t l a r  
m-dimensiona. l  square  ma.trix. By  S * = T S  we mean  
that  set whieh is ohta ined froni  S by suhjeet ing each 
o f  t i l e  x,'. t o  the  l,rallSfl)l'lnati(lll: Xi ])eeoll'les T x i =  
b + A . x ~ .  

If N1-~ ~q,'e, St = N-,+c,  where c is a rh i t r a ry .  T h e n  

T £ ' t  = T S - ,  + T c  : o r  S~'* _= S~'* . 

Because  T is non-singuhu', i.e. det  A , 1), there  exists  
;t T ~ sueh tha t  

T ~ T x - -  x 

( )S  H 0 . 1 1 ( ) 3 I E T R I ( '  S E T S .  I. s o : ~ t R  C;I~X'J,:RaL ' r ~ : o f e t , : s ~ s  

(Birkhoff  & 3 lae lmne ,  I!)53). It t h e n  follows in a 
s imi lar  way. tha t  N* _~ A'*_ - T 'N*---- T .1~%,*., -~ N] =-- N=>. 
Thus  

& - S~_, + ,w* - -  x * .  t-t) 

Sini ihu ' ly  since ,<,'t ~ N., , > ,'q - g._,, 

x ,  - & ,  , > & *  - ,S'~.  (5 )  
FurLher  

A S T ( N J ~ ' I )  = A ' , ( y ) & ( y - T  ~x)r/r 

= :(det A) I f S I ( T - l y b % I T - l y - T - I x ) d z  

= !(det A) t.A'*N* . ((i) 

Ninve de! A / II, it fol lows tirol 

= _ _ ,-> ,q,, N., . (7 )  ,~,'tb,', S.,S., S ' S *  = "* 7,. 

From (4), (.5) and  (7) there  follows the  l e m m a :  

I ,EMMA 1: 

,S', ) ( ,S ' :  , , , s ' * ) - ( S *  

and  it is suffie, ient t,. cons ider  one homomet , r ie  pa i r  
in order  t.o consider  I he whole fami ly  of ])airs genera ted  
hv the  non-si , lguhtr '  aff ine t r a n s f o r m a t i o n s  T. 

By (6) the  ope ra lhms  ~ and  T e o m m u t e  for uni-  
m o d u l a r  T:  since (6) is t rue  for b = 0  and  

A = d i a g ( - I ,  I . . . . .  1),  

I , emma I holds for the  l imited e n a n t i o m o r p h i s m  

,';t - -  T S . ,  = , % ( -  . n ,  .r., . . . . .  z , , , )  

in m > ! d imens ious .  It  holds also for the  full enan t io -  
m o r p h i s m  St = TA'o = N._,( - x) = ~.,. whi ls t  f rom (6) 
a.lld - -  eo lF l lu l l t o .  

Because  of Len lma  1 it is (! t l l lVell iont.  to ('all t,he whoh, 
f ami ly  of pairs  re la ted  hy t r a n s f o r m a t i o n s  T om 
h o m o m e t r i e  pair .  B u t  t.his does no t  a d e q u a t e l y  def ine  
the  most, genera l  d i s t inc t  h o m o n m t r i e  pair .  I t  h a p p e n s  
in genera l  t h a t  ,¢,'t ) ( No_ for a r ange  of va lues  of lhe  
x~3), z~. ~) in S1 a n d  the  co r re spond ing  x~3 ), z~ z) in Se. 
Nor  is it  necessary,  as H o s e m a n n  & Bagehi  (1954) 
have shown,  t h a t  the  n u m h e r  of poin ts ,  N b  in St 
should  he the  same  as the  n u m b e r ,  A%_, in ,%. How-  
ever,  the  to ta l  weight  of points  in A't and  ,% is neces- 
sar i ly  the  same:  for 

----~ A .  (,.,~, '-' - ,o- ,  )~ 
,S'l& S.,S-, • ~ l j  

and  x~e a lways  choose posit , ire xveights zj. M.v~. 
precisely if (I is t n l e  for bo th  NI and  N._, 

.V t - -  t ?"2  - 1 

2" : { " - , , "  ~" z ? ' ,  
i ( ,  7 = 0  

where w is an  in teger  > 0 :  a n d  A'e m a y  be nor'ma.lized 
s o  that  
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• . . ,  ~ . ~ _ ~ )  = w . 

Nou if ~1~ ) - (  So_ for a range of the x~ and z~, then 
the correspondence ) .... ( is specified by parameters  
a ,  b ,  . . . ,  p, defining the coordinates, and parameters  
p, q, . . . ,  t defining the weights. These parameters  are 
(.ommon to both S1 and $2. ,1~ (or S,,). is then com- 
pletely specified by further  constant  vectors n(l O, n.¢_, ~), 
. . . .  n~ 1) (or n~ ''), n(2 "-'), . . . ,  n~ )) and constants m~ 1), ,n~ 1), 
. . . ,  , . , ~ ' ) ( o r  ~ " ) ,  '~)  . ,  ~ ) ) .  ; . '  .~.' • • m•2 , . .  r,s__<_ N ~  ~ , < N,2 
and the n! t), rn,~ ~) necessarily, differ from the n (2)~, , ni~ ). 
It is convenient to call the whole fami ly  of corre- 
.~pondenee.s St )--( $2 specified by a, b, . . . ,  g;  p, q, 
• . . ,  t; one homometric  pair and to call S1 and S2 each 
o~,. homometr ie  set (h.s.). 

III':FINITIO:N 4. If 

,q't ~ O) =St(n i  , a , b  . . . .  , g ;  m!b ,p ,q ,  . . . , t )  
_ (2) S o  = S, ,(n~?),  a ,  b . . . . .  p," rni. , p, q, . . . ,  t) 

a~ld ,S't) ..... (So. for some a , b  . . . .  , ~ ,  p ,q ,  . . . , t ;  then 
,~,'~ (together with its equivalents  TS~) and $2 (to- 
~ether with its equivalents  TSo.) are each one homo- 
metric set, and S1 and S.~ together constitute one 
homometric  pair. 

In the definit ion we have adopted there is still a 
I)ossible uncertainty.  If S ) -  ( T 'S  where T' is some 
n(m-singular affine t ransformation,  T S ) - (  I T ' S  is 
some pair of h.s. for general T. But. T' itself ma.y be 
so simple that  it could seem unreasonable to call S 
and T'N dist inct  sets. An example  is given by Hose- 
mann & Bagchi (1954) from a private communica t ion  
I)v 1)r Pat terson (their Figs• 1 and 2). 

Hosemann & Bagehi (HB) have called pairs of sets 
of the type of this example  'pseudohomometrie ' .  
According to their  definition two sets Sl and So are 
pseudohomometric either (a) if TSt ) --( TS2 and S., = 
T'S1 with T* a congruence or an enant iomorphism" 
or (b) S1) .(So if and only if Sl and S2 are infinite 
(and therefore almost  certainly periodic) sets. For our 
purposes the dist inct ion in (b) between infinite and 
finite h.s. is unnecessary since, if Sl ) ( So. and S~ and 
N,, are finite (and therefore non-periodic) sets, the sets 
,S'~ and So can t)e assigned to a unit  cell of a periodic 
lattice to give infinite (periodic) sets S£ and S,; with 
the property S~ ) - (  S.;. Thus the class of all infinite 
periodic sets includes as a sub-class the class of all 
finite non-periodic sets" and except for the as-yet- 
unexplored case of infinite non-periodic h.s. it  is 
sufficient to investigate all periodic h.s. in order to 
investigate all h.s. 

For our t)urposes the dist inction in (a) between 
general h.s. S~ related to others S~ by TS~ )--( TS2, 
and a sub-class of h.s. for which both TS~ )--( TS~ 
and So.= T*SI, is also unnecessary. According to the 
definition of ttB(6), S~ and S,z are congruent if T* is 
a combinat ion of t ranslat ion and rotation. According 
1() our Definit ion l ,  if T* is a congruence in HB's  
sense, No~ T#,SI where T # is a rotation. The dcfini- 
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tion of enant iomorphy given by HB(7) is identical 
wit.h our Definit ion 2" but fi'om (5) 

Sj ,-~ $2 ~ TS I  ,,~ TS2 

so that  there are no h.s. obeying TSI ) ( TS,z, So. = T:I:SI 
with TJ; an enant iomorphism.  However, from HB's 
example after Patterson, H B  Figs. l and "2, by  the 
enant iomorphism TJ; the), must  mean a l imited enan- 
t iomorphism (reflection) in m-dimensions of the type 

T+ +=d iag  ( - l ,  1, . . . ,  !), m ::: '2- 
or again 

T+ + = d i a g ( - l ,  1, - 1 ,  . . . ,  1), m 1:3" 

or indeed any enant iomorphism but  the full enantio- 
morphism 

T = d i a g ( - l ,  - I  . . . .  , - 1 ) .  

By 'enant iomorphism'  we shall always mean "full 
enant iomorphism' ,  enant iomorphism's  T+ + which are 
not full we refer to as ' l imited enant iomorphisms ' .  

The example  of H B  Figs. 1 and 2 means that  sets 
satisfying TSt ) - (  TN2, $2--T*S1, with T* a l imited 
enant iomorphism,  exist. In  this 2-dimensional example 

and if the reference system is rotated through 45" 
(so tha t  both sets are rotated equal ly  relat ive to t, be 
reference system) 

T~: --- diag ( - 1, 1 ) 

in the new system. Pat terson has emphasized, in 
lecturing on the sets of H B  Figs. [ and 2, tha t  if two 
sets $1 and So satisfy TS1 )---( TS2 for some T, and 
N o - T + + S 1 ,  then, despite the s implici ty  of T~:, the fact, 
tha t  $1 and T~;S~ have the same vector set is not 
trivial• This view accords with tha t  of the author,  
for if $ 2 ~  T++S1 we should expect according to (6) 

tha t  ' = S~,$2 T:~StS1 rather  than  $2So_= S I S 1 .  Indeed, 
when S 0 - T ¢ S t  with Tt a rotation we should also 

expect SOS., = T tS , ,~  rather  than  S,,$2' ~5 = S1S1.- 
Thus, if TS1 ) ( TS2 and $2-= T 'S  with T' either a 

rotation or a l imited enant iomorphism,  we can still 
write within the terms of I)efinition 3 that: S1 ) -( T'S1. 
It  is here tha t  uncer ta in ty  arises however" for if 
T'T'  is the ident.ieal t ransformat ion (as for the limited 
enant iomorphism for example) T'St  ) (  T'T'S1 and 
T'S1 is one of the equivalents  of S1 under T'. Never- 
theless, because St ) ..... ( T'S1 is a valid relation we t.rea~ 
St and T'S~ so related as dist inct  h.s. 

Final ly ,  we must  remark tha t  if ,.t~ ) - ($2 and 
VSt )--( VS2 with V a singular affine t ransformat ion 
then, unt i l  we have more informat ion on the point, 
we shall t reat  $1 and VS1 as the same h.s." an example 
of h.s. which remain h.s. under V appears in HB 
Figs. 2 and 3 (after Patterson). A diff iculty associated 
with this choice is that  it. will not in general be clear 
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to what  family  a given h.s. belongs; but  Patterson 
(1944) has a l ready shown tha t  sets in one dimension 
have their  counterpart  in m > 1 dimensions, and tha t  
these sets become 1-dimensional in m( > 1)-dimensions 
for part icular  1-dimensional sets of parameters.  I t  
would be unreasonable to isolate this set of para- 
meters from the more general m-dimensional  set. We 
shall  always count h.s. in m-dimensional  space as 
dist inct  from h.s. in m'-dimensional  space if m :/~ m', 
however. 

By analogy with Definit ion 4, the definit ion of dif- 
ferent homometric  n-tuplets is now obvious unless 
there exist n-tuplets which break down into sets of 
pairs for some values of the parameters!  

S o m e  t h e o r e m s  on the generat ion  of h.s.  
f r o m  s u b s e t s  

Hosemann & Bagchi (1954) have provided a very 
powerful means of generating h.s. Expressed in our 
notation, the relation HB(10) is the theorem" 

' I f  St  ~ $2 and Sa ~ $4, then StSa ) ( S~$4' [~a]. 

The proviso S ~ $ 2  means tha t  S t ~ S t .  The debt  
which the theorems of this paper owe to Hosemann 
& Bagchi will be apparent  from the manner  of their  
proofs. But H B  in fact proved only the theorem" 

"If St ~ S2 and Sa ~ $4, then t~t~3 and StS4 have 
the same weighted vector set' [/~]. 

Whilst  the difference t)etween the theorem as asserted 
and the theorem as proved seems slight, consider the 
one-dimensional sets of uni t  period containing all 
points of equal weight : 

S t = 0 ,  1/12, 1/4, l/2", ,a--h' 1/13, 1/12, 5/12,~ 3,4,, 12/13", 

$4 ~ - - S a = l / 1 3 ,  !/4, 7/12, l l /12 ,  12,/13. 

St is not centrosymmetr ical  so tha t  S~ ~ St: nor is 
Sa. Yet it is easily verified tha t  

~qt~qa' 7 =S~Sa' = 0 , 1 : / 1 2 - 1 / 1 3 , 1 / 1 3 , 1 / 1  "),_ 1 /12+1 /13 ,1 /6 ,  
l / 4 - 1 / 1 3 ,  I,/4, 1/4+1/13,  1/3, 5/12, 1/2--1/13, 

1/2, 1/2+i/ '13,  7/12, 2//3, 3/4, 5/6, l 1/12, 12/13 • 

in which again all points are of equal weights. 
We therefore take H B ' s  theorem in the form of [fl] 

and our Theorem 3 is then H B ' s  assertion [~] with 
some provisos on the subse t s - -namely  tha t  Rt ¢ 0 for 
all h and Ra 7' ~} for all h, where the Fourier Trans- 

form, R, of S is defined below. Since So.$4 ..~ S~Sa and 

S2Sa ,.~S,$4 (since S,$4 . , .  S1S4----" SIS4) we cannot ob- 
tain combinat ions which can hope to generate different 
homometric  pairs. 

We define the Fourier  Transform of S(x) (which is 
defined for all h for non-periodic sets and for all h 
with integral components for periodic sets) by 

R(h) ---- S(x) exp 2 ~ i ( h . x ) d r ,  

where the region of integrat ion is as for g,g,~ defined 
in (3) previously. If $1-- S~, such tha t  S l ( x ) =  S 2 ( x - c )  
= S2(x) + c 

R1 (h)--  R., (h) exp [ -  2 ~ i h .  c},  

which we write Rt---R2. Then $1 --- $2 ~ R , - -  R2 be- 
cause of the Fourier  Inversion Theorem. 

We can now prove Lemma '2. 

LEMMA 2" A sufficient condition tha t  $ 1 S 2 - , ~ t 5 3  
is Se--$3.  Providing R l (h )  is never zero, a necessary 
condition is tha t  $ 2 -  $3. 

The condition is obviously sufficient, and further  

$1 $2 =- $1S3 --+ RIR2 =- R1Ra -> R2 =- R3 

(since RI ¢- I)) -> $ 2 -  $3.  

T~I]~OREM 3" If $1 ~ Se and Sa-,~ $4, and R1 and Re 
7? are never zero then ,qlSa )--.( $1S4. 

Since S1Sa .-~ ,~;2S4 the theorem -> S.2S4 ) -  ( $ 1 S 4  we 
therefore write the full Th. 3 as asserting 

$1 --- Se and $3 ~- $4, with R1, Re ¢ 0 

for all h + S~Sa ~-, S~$4 ) ( $2S3 ,'-, $1S4 . 

Firstly, following Hosemann & Bagchi (1954), 

(SIS3) (A~I J.~3)= Stt~3S1S3-- St  S1 $3~,~3 

~--- S1SIS4S4- -  $1S481S4-~- ($1S4)(SIS4)  . 

We can now prove the theorem providing StS3 7~ S,S~ 

and ,_~'tSa ~ StS4.  By Lemma -'), S t S a -  $1S4 -~ S a -  $4 

(since Rt :/: 0). But  $3 ~ $4. Further ,  if S t S a , , , S I S 4 ,  

then $1S3 =_ 81S4 -- St  S3, whence, by Lemma 2, $1 =-- 
$1 - S,, (since Ra -~ 0). But  St ,-. $2. 

COROLLAaY" .[f St,  $2 and Sa are three point sets 
and Rt -/: 0, Re :¢- (l, Ra ;~ 0, for all h, then 

s~s~s~ ) - (  s ,  so.& ) ( sts~s~ t ( s,s~.s3 

with (here))- ( used transi t ively.  
The four sets arc a homometrie  quadruplet .  

THFOREM 4" If S, ~ S,,, then S, St  ) ( S1Se. 
For 

S, St  - S tSe  ~ R t R t  - R1R., , 

$1S1 ,,~ S1S2 -+ RIR1 -- ReRI " 

and Rt = 0 - ~  R.,=0. Whence in either case S t - -Se ,  
contra hyp.  

THEOREM 5" If S~ ) ..... ( Se and S~ )--( S~, then SISa, 

$1S4, S.2S~, $2S4, SISa,  StS4,  $2S.~ and $2S4 have the 
same weighted vector set. 



1:(. K. B U L L O U G H  261 

For 

(S, Sa) (SIS~) = ,SIS~SaS~ 

= S I S 1 S 4 S 4  ~-- S 1 S 4 S 1 S 4  -- (S1 $ 4 ) ( S I S 4 )  • 

The other eases are similar. 
In view of Th. 5 with S a -  $1, $4 = S~., it is tempting 

now to prove that  with suitable provisos 

s1  ) ( s , .  -~ s l s l  ) ..... ( ~ ~s,~.  

analogous to Th. 4. Certainly, if 

R~ -sa O, S~S~ - S tS2  -+ S t  - So_ . 

But if SIS1 ~ S IS2  we have Th. 6" 

THEOREM 6 :If , _ IS I . ,~SIS2  and S I )  ..... ( $ 2 ,  and 

R1 # 0 ,  Rz # 0  for all h, then S1S~)- (SiSO-. 

S I S I  ~ tel ~_ _ --> S I  SI  -~- S182 ) ( $1S2  (by T h .  3). 

And because identity is an equivalence relation this ~-~ 
implies 1--. _1-_. S tS2  = 

S1S1 ) - (  S I S 2  . 

But because ) (  is not an equivalence relation 
'~ ~ ,~ SIS2  ) ( S t S a  -~ S t , , ~S '  S1So_ so that SIS1 )-- ( ~. IS2 -~ 

,qtS1 )%( S,  Se. We therefore have" 

THEOREM 7" If ,St ) -( $2, and Rt ~ 0 and R e / - 0  

for all h, then either StS~ ) ( S~$2, or S t S t  ) -( S tSo ,  

or S1SI  ) ( S,S.,. ) ( S~$2 with ) -( used transitively. 

If S , S ,  )-/-( SIS2,  S , S ,  ~ S 1 S 2 "  if 

*~IS2, S I S I ~  S I S 2  • SIS, )-/( ~ ' 

THEOREM S: If S, ) ( So, S~ ~ S,, and R1 =/: 0 for 

all h, then SiS, is h()mometric with each of S,  S1, 

, 1,~9. and ,1.~ So. 

St  S1 )  .... ( S1S t  is Th. 4. 

S I S I  = $1S2 ~" S.,_ .-. SI" S1S1 = ,SIS2 ~ S,  -= $2 

by Lemma 2 ; etc. i---._ 
Theorems 7 and 8 together assert that SIS1, SISt 

S1Sl  ) ( ~ I S I  (------$2S2) ) -( $1S2  

$2,S', , 

where ) - (  is used transitively. 
A convenient illustration of Ths. 7 and 8 is provided 

1)y the one-dimensional periodic sets containing four 
points of equal weight 

S I = 0 ,  a, 1/4, 1 /2+a ;  $2=0,  a, 1 /4+a ,  1/2" 
St=() ,  1 / 2 - a ,  3/4, l - a ;  32=0,  1 / 2 , 3 / 4 - a ,  l - a ;  (8) 

given originally by Patterson (1944). 
I t  is easily verified tha t  

StSt=(O,  a, 2a, 1/4, 1 /4+a,  1/2, 1 /2+a ,  1/2+2a,  
3 /4+a ;  1, 2, 2, 2, 2, 1, 2, 2, 2), 

S~Sx=(O, a, 1 / 4 - a ,  1/4, 1 /4+a ,  l / 2 - a ,  1/2, 1 /2+a ,  
3 / 4 - a ,  3 / 4 , 3 / 4 + a ,  l - a :  4, 1, 1, I, 1, 1,2,  1, 
l, 1, 1, 1), 

StS,~=(0, a, 2a, 1/4, l / 4 + a ,  1/4+2a,  1/2, l / 2 + u ,  
1/2+2a,  3/4, 3 / 4 + 2 3 ;  l, 3, l, l, 2, l, 1, 3, l, 
1,1), 

(0, a, l / 4 - - a ,  1/4, 1/2, l / 2 + a ,  3 / 4 - a ,  3/4, 
3 /4+a ,  l - a ;  2, l, l, 2, 2, 2, l, "2, l, 2), 

and that  

s i s ,  s~so- s i s1  ) (  s i s1  ) ( ,s~,s~ ) ( ,  l .~ 

with )--( transitive. 
A homometric quintuplet is generated by the two 

4-sets 

S t = 0 ,  1/13,4/13,6/13;  $2=0,  1/13, 3/13, 9/13 ; 
,~1=0, 7/13, 9/13, 12/13 =~,  4/13, 10/13, 12/13- 

containing again four points of equal weight. S1 and 
$2 were not mentioned by Patterson explicitly but can 
only be his cyclotomic sets for n = 13 as we shall show 
later.* For these sets 

S t S t  = 

$2S2 = 

SIS2 = 

S1S~ = 

(0, 1/13, 2/13, 4/13, 5/13, 6/13, 7/13, 8/13, 10/13, 
12/13; 1,'2, 1 , 2 , 2 , 2 , 2 ,  1,2, 1), 

(0, 1/13,-,')/13, 3/13, 4/13, 5/13, 6/13, 9/13, 10/13, 
12/13- 1,2,  1 , 2 , 2 ,  l, 1 , 2 , 2 , 2 ) ,  

(0, 1/13, 2/13, 3/13, 4/13, 5/13, 6/13, 7/13, 9/13, 
10/13; 2, 2, 2, 1,2,  l, 1 , '2 ,2 ,  1), 

(0, 1/13, 3/13, 4/13, 5/13, 6/13, 8/13, 10/13, 

and one or other of S iS2  or S1S,z form a homometric ~-~ 
triplet providing $1~$1, $1 ) -  ( Se and Rt # 0, R2 ¢ 0 S1SI= 
for all h. They may also form a homometric quadruplet 

if S tS1  )--( SIS2 )--( $1S2 ( t rans i t ive) - - ( ) .  I t  is im- 
possible to obtain more than a homometric quintuplet 
from the homometric pair S1 and $2. For we can have 
at most 

l l /13,  12/13- 2, 2, 2, 2, 2, l, 1,2,  1, 1), 

(0, 1/13, 2/13, 3/13, 4/13, 5/13, 6/13, 7/13, 8/13, 
9/13, I0/13, 11/13, 12/13; 4, 1, l, 1, 1, 1, l ,  l, 
l, l, l, l, 1). 

Th. 7 is the restricted form of the more general Th. 9. 
........ 

* These sets have been given explici t ly by  Menzer (1949). 
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THEOREM 9" If  S1 )--( S~, Sa ). .(  $4, and  ne i ther  
R~ = 0 ,  nor R 2 = 0 ,  nor R a = 0 ,  nor R4=()  for some h, 

then  e i ther  S~S..3 ) ( S~$4 or S~Sa)- ( S~$4 or 

S~Sa ) - (SIS4)  .... ( S~$4 () .... ( t r a n s i t i v e ) .  

Bee.ause ()f Th. 5 it. is suff ic ient  to prove tha t  e i ther  

,',~Aa 7~ 3'~,%'4 and ~;~aa ~ SIS4, or tha t  

S~Na,--S~N4-, S~Na). (S~N4 . 

The proof is identical  to tha t  of Th. 6. 

3134 -)" '~3 -~-~ '-4S' " 3,S.., ~, S, S4 .-+ Sa- -$4 .  If 

S' g~ ~ S 1 N 4  Nl~q)~3 ~ -  S 1 N 4  ) ( S I N , I  ( h v  T h .  3). I f  , 1 ~ . 3  . , 

.%&~=- S~$4, 3~Sa ) ( S~,.~S' (by Th. 3). 

If S, ). ( , .~  and  N'a ). (34,  a eomplete  set of sets 
genera ted  by the four h.s. is 

~ ~ .~ ,~ ~ -- 
3 2 8 3 ,  $ 2 N 4 .  ~. 2 ~ 4 ,  

()f these, by  Th. 3, N~Sa)--( N~aa, S~84 ) ( ~ 4  and  
s imi la r ly  when  S~ replaces S,. Tha t  t hey  do not 
necessari ly form a homomet r i c  octut)let is a l ready  
suggested by  Th. 9. Indced,  if 

S a = 0 ,  a, 1/4, 1 / 2 + a :  S ~ = 0 ,  a, l / 4 + a ,  1/2" 
S a = 0 ,  b, 1/4, 1/2+b" $4=0,  b, l / 4 + b ,  1/2" 
~a = O, 1/2 - b, 3/4, 1 - b" /#4 = 0, 1/2, 3/4 - b, 1 - b ; 

with b > a .  (8') 

3'~S~=(0,  a, b, a + b ,  1/4, 1 / 4 + a ,  1 / 4 + b ,  1/2, 1 / 2 + a ,  
1 /2+b ,  1/2+a+b, ' ,3 /4+a,  3 /4+b;  1, 1, 1 ,2 , '2 ,  
1, 1, 1, 1, 1, 2, 1, 1), 

,~,S'4 = (0, a, b, a +b, 1/4, 1 /4+b ,  1/4+a +b, 1/-:'), 1/2 +a, 
1 /2+b ,  1 / 2 + a + b ,  3/4, 3 / 4 + a + b "  l, 2, l, l, i, 
2, 1, l ,  2, l ,  l ,  l ,  1), 

3'._,Sa = (0, a, b, a+b,  1/4, 1 / 4 + a ,  1 / 4 + a + b ,  1/2, 1/2+b, 
1 / 2 + a + b ,  3 /4+a,  3 /4+b;  1, 1, 1 ,2 ,  1 ,2 ,  1 ,2 ,  
• 2, 1, 1, 1), 

N~Sa=(O, a, 1 / 4 - b ,  1/4, 1 / 4 + a ,  1 / 2 - b ,  1 / 2 + a - b ,  
1 / 2 + a ,  3 / 4 - b ,  3 / 4 , 3 / 4 + a , l - b , l + a - b "  2 , 1 ,  
1, 1, 1, 1, 2, 1, 1, 1, l ,  l ,  2), 

,S'~S4=(O, a, 1 / 4 - b ,  l / 4 + a - b ,  1/4, 1 ~ 2 + a - b ,  1/'2, 
1 / 2 + a ,  3 / 4 - b ,  3 / 4 - b + a ,  3/4, l - b ,  1 - b + a "  
1,2,  1, 1, l ,  1, 1 ,2 ,  1, 1, 1 ,2 ,  1) 

N~N4, ,. 2S4 ~ NaSa. These three 
degenera te  re la t ions are ac tua l ly  d i f ferent  f rom those 
suggested by Th. 9, for tha t  theorem suggests degener- 

"t . ate  re la t ions of the  type  SaS~ ~ SIS4 or NiSa .,~ S~$4, 

• %Sa "-" ,-~$4 or S~Sa,-, S~$4" etc. I t  m a y  be t ha t  Th .9  

ean be sharpened  to assert  tha t  if S l )  (N.: a;td 
Sa ) .- ( ~..4,~ with R1, R2, R.~ and R.1 .. ~ (}, then  

StSa ). .(  $1S3 ) (N1,S'4). ( $1S4 ( )  ( t r ans i t i ve ) .  

E q u i v a l e n t l y  therefore we should have  (omit. t int  the 
"-" for convenience)  

, .~oa) ( , . . , a )  ( , , . , 3 ~ ) -  ( ~ ' 

-, , 193N I , , 7"5 , ,SAN, ) ( ) ( 3-,3~ ) -( 3aS=, 
,%';, ) ( N~,V, ) - (  S~S2 ) ( ;~S.~. 

However ,  we have  been u n a b l e  to prore t h a t  there  
is even a homomet r i e  t r ip le t  amongs t  the e ight  sets 
genera ted  by 3'i or S._, and  ~8 i)r N4 or Sa or $4. But .  
if there  is not, the  sets mus t  obey a fo rmidab le  a r ray  
of condit ions-  t)y Th. 9 we can a lways  choose Sa and  

so tha t  SIS3 )--( S1S4, and  by Th. 3 N~Sa ) .... ( N~S:~ *.4 

and SiS4 )- ($1S4. If now NeSa, SIS4 and SISa do 

c, ~, )_/.( NtNa ~ 3tS4 = ~ Sa ~)1' not  form a. t r iplet ,  o~.4 ' ' ' • K 1 

,q ' ,S4~NlSa, and  l)v L e m m a  2 only  S1S4,- ,StSa is 

~" • "t possible. Smnla r ly ,  S I S 3  ) ~ - (  S l S 4  --> N1S4-~-~ S 1 S 3 .  ~'V( • 

now have  N134~-- ~1'~3, NIS4~- S1S3. Since ~_ a,. a -  = ,~4, 4 

we have  from L e m n m  "), c, S~ =_- SiS1 -+ Rl +.R~ 

By Th. 9 we can also choose S,_, so tha t  S1Sa )-. ( $2S:1 

"I l "~ "r and sinee by Th. 3 SAN'2) ( SaS2 and 3a~Si ) .... ( NAN1, 

"I l l t we mus t  have  SaNa--3aSa. Also NtNa, S2Sa and  $IN4 

form a t r ip le t  unless S_oSa )¢-( S,$4 ~ S2Sa )-/-( S! N:3 
-f 

(since S t S 4 - - S j S a  al)ove). If 3eSa ).¢-( SlSa, 

( . J  "t "T "t ~, "t "t ~ e~a =-- NlSa -,- ,S2SeSaNa =- S1S1SaNa -~ StS1 =- SoN,_, 

(since NaSa-- NaSa and  Ra -/: 0). 

The relat ions S t S , -  $2So. (with S, ) .... (Se)  is a po.~- 
sible one, however,  as we prove in Th. 10 below; and  

sets obeying StS ,  =-SIS, require  only  t ha t  SIS ,  be 
centro- sy m metric.  

If  there  is no t, ' iplet amongs t  the eight  sets genera ted  
by S~ or $2 and  Sa or Sa or $4 or $4, we mus t  have  also 
(again omi t t ing  ~ )  

s ~ a a )  --(S,S~, N~3a) -( ' ~ ' ' ' ' 

N2Sa)~ ( No.33,~ -~ StS4 ) .... ( Nt~ ~4, X2N4' ) ..( S,.,S+, 

X 2 S 3  ) -  ( X 2 S 4 ,  S i S 4  ) -  ( S 2 S 4 "  

~ ' a $1S4. (9) , ~ l S a  ~ 3 2 3 4  ~ 3 2 3 3  - ~  

It, therefore seems l ikely tha t  S~, So, Sa, Sa, Sa and  N~ 
will genera te  a t r ip le t  in a lmos t  all  if not. all eases 
and  will genera te  a quadruplet ,  in most.. Indeed,  by  
re label l ing ,% as S,., in the examples  (8) and  (8') 
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which follow Ths. 8 and  9 the  degenera te  re la t ion 

S, S1 ~ S~S2 f rom (8) becomes S, S1 -- £282 associa ted  
with the  quintuplets obta ined  f rom (8')" whils t  if the  
sets S1, S2, Sa, Sa, $4 a n d  $4 are t a k e n  as def ined in 

(8') the  three  degenera te  re la t ions  N.zN4 ~ ,S~b;a etc. 

(i.e. S, ,~Ja~q2S4 etc.) are conta ined  in (9). It, m a y  
. . . .  , N-1 to- indeed 1)e t)()ssible to p rove  t h a t  N1, S,,, 

ge ther  genera te  a qu in tup le t  in all cases 1)ut the pr()of 
will require  much  heavier  mach ine ry  t h a n  (ha t  devel- 
()ped so far.  

A n  i n t e r e s t i n p ,  h o m o m e t r i c  p a i r  

We show at )ore  t h a t  one necessary  condit ion tha t  N~ 
()r S e a n d , a ~  or ~4~4 ()r,a~ or,.~,~ do not  g e n e r a t e a h ( ) m o -  

met r ic  triplet, is t ha t ,  with £'1 ) ( S2, SiN, = NeN-.. We 
showed also t h a t  a solution of the  two relat ions is 

7q conta ined  in (8) wi th  S., relal)ellcd as ~,_,. We now 
show tha t  a more  general  solution of the pair  of 

rehtt,ions N,) (S2, S IN1-  N2N2, t han  that conta ined  
in 

{ 1 1 S t = ( 0 ,  a ,a , ,  2 + a "  1, 1, 1, 1) 
/--]-1 = S,, = ( 0 , _  a, ~ + a , l  ~a" 1, 1, l ,  1) 

exists .  We shall  res t r ic t  ourselves to points  of cqual  
weight  a r r anged  on a l inear lat t ice.  We consider sets 
()f n + 2r points .  

THEOREM 10: There  exist  solutions of 

S1 )- ( $2, I~IS1 ------ $2S2  , 

for H1 and  So each conta in ing  n + 2 r ( n  > 2) points  of 
equal  weight .  

The t r an s fo rms  of St  and  S-, are R1 and  R2. We shall 
suppose them of the  form 

R 1 = R~ i) nt- R~ 2) 

R~ = R(e ') + R~ -,) 
~ }tere 

R(1D = R(21) for all h , 

R(~ 2) # R c-') for some h .  

Thus,  S~ ) -( $2 is not  excluded.  Because  of the  prop- 
ert ies of the  &func t ions  represen t ing  S1 and  Ne, cor- 
responding to R~ ~) is S~ 1), and  corresponding to R(12) is 
,¢,,(2), etc. 

Because of the  a r t ) i t ra ry  choice of origins ()f &S~ 

and S~S,)_ 
• ,~ ~, , )  . )  

N~ S~ -- S~q,., -~- R~ = R 2 exp 2~ih ~ 

but  because the  origin of S~ or S2 is a r b i t r a r y  we can 
choose it so t h a t  

R(I ~) = R.(, l) for all h , 

where in this con tex t  R~O= R~ ~) is a more  s t r ingent  
condi t ion t h a n  R(~ l ) -  R!)) and  permi ts  no re la t ive  shift  
<)f origin of S~ ~) and  S~ )). 

We now choose specifically 

71 
R~,~ R,9> v -,, = _ = - -  ~-i, (10) 

i=1 

where the, , ;  are tile n roots of ~; = !. Then R~I)= 
R.9) =(), h ~ () (rood n ) a n d  R~)=R!)b=n, h =()  (rood n). 
Here the  re la t ion = is one ()f congruence in the  sense 
defined I)v H .W.  4(.). We shall a lways  follow a con- 
gruence re la t ion with the modulus  of t h a t  congruence 
so t h a i  there  will 1)e no p()ssit)ility of confusion with 
the  iden t i ty  relat ion defined earlier.  We shall use 
a ~'- b (ln()(l '~) lo deny  congruence (nlod ~l) between 
a and  b. 

If  ~S1 S, - SeSe, then,  wri t ing R!~ ">_ = R.; (2)_ exp 2jrihfi, 
we have 

(R~"->)~-(R2('2))')exp4nihfl, h ~-() ( , n o d , )  ( l l )  

(n +R~2))"=(n+R2 (2> cxp 2nibfl)"-, b --() (mod n) (1 I ') 

in which the  p a r a m e t e r  fl is n() h in te r  quite  a r b i t r a r y  
1)ut fixes (he relat ive origins of N~ '') an(l N c-'). We now 
choose 

R~")=R~(Z)=R, b 7 0 (rood n) (12) 

so tha t  (!()) and (12) toge the r  meani- 

R~=R 2 exp -{4~ihfl} ,  b ~ () (m()d n ) .  (12') 

At the  same t ime we have  sat isf ied 

RIRI=R.,.R2, h ~ 0 (rood n ) .  
If 

RiI~I = R2/~2, ]t - 0  (rood n) , 

we mus t  have  e i ther  hfl=O (Inod l),  h - t )  (mod n)" 
or R = 0, h -  0 (rood n). The f irs t  possibi l i ty r eappea r s  
la ter  in a discussion of the  second possibil i ty.  We 
therefore  choose R = 0, h - 0  (mod n) and  then  (1 l ' )  is 
satisfied also. F u r t h e r m o r e ,  ( l l ' )  is of the  form 

R i =  R~ exp - {4~/b/~}, b =()  (mod n) 

provid ing  
2hfl=O (mod 1), b = 0  (rood n) (12") 

so t h a t  
f l=m/2n: m=() ,  1, . . . ,  2 n - - I  . (13) 

We have  now sat isf ied & Sl - - ,  ,,~,., and  Rl/~l = R2/~,, 
all h. If  hfl=() (mod l) ,  b - 0  (mod n) we have  R~2)= 
R(2) for h_=0 (rood n) whe the r  or not  R = 0 "  and 
R, = ( n  + R ) =  R2 exp -{2:nihfl} for h = 0  (mod n). Bu t  
a l r eady  R l = R 2 e x p - { 2 : r i h f l } ,  h ~ 0 (mod n) and  
therefore,  if hfl = 0 (mod l),  S 1 -  $2. If  S1 ) - (  S,z we 
mus t  therefore  have  m in (13) odd;  and,  since R~ 1) is 
inwu ' ian t  unde r  mul t ip l ica t ion  t)y exp 2~ib/'n only (he 
case m = l is of interest .  

. . . .  
~- (12') means that the apparent origin of S 2 is displaced by fl 

(or fl+ .}) relative to the origin of Sl: the chosen origin of S.~ 
is the same as that of $1, and (12") makes the two origins 
compatible. 
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We propose now to choose R in the  form R =  
R* exp 2.niha, where a is real and  > 0 .  Then,  for 
gcneral  a, we canno t  have  $1 ~ So. and  we have  solu- 

t ions of S~S~--$2S2, S~ ) - (  $2, provid ing  only t h a t  
we can f ind R* such t h a t  

R* /: 0, for some h ~: 0 (mod n) 

R* = 0, h = 0  (rood n) . (14) 

A solut ion for R* obeying (14) for all h except  
h -= () ( m o d n s )  is 

( ) x" I, e x p 2 ~ i h b  O<b<l  R *  ~ (0  t , , 

where the  w t are  such t h a t  the  w~ form a comple te  
set ()f roots  of x.~= l. In  this  case 

R*=0,  h=-0 (modn) 
but 

R * = s ,  h - ~ )  (rood us)" 

and  if (1 l ' )  is to be sat isf ied 

hfl=(~ (rood 1), h - O  (rood n~) 
( I F  

s / 2 - 0  ( m o d l ) .  

Thus,  .~' is even,  ~ = 2 r "  a n d  the  cot are of the  form 

t,)t = exp  2~iqt/ns = exp ~iqt/nr, 
where 

q t - O ,  l ,  . . . ,  ( s -  1) (rood ,) 

and  cons t i tu te  a comple te  set of residues (rood .s'). 

A soluti(m of SiS1 =-$2S2, $1 ) (  So, is therefore  

~ 2r 
RL ~' ,,~'/: ( x" h\ exp 2~iha = " ~ '  + / % )  

i= 1 t =-'~= 1 

R., = '~,i'~t' + _.~co exp 2~ih(a+ 1/2n)', (15) 
i= 1 \ t = l  / 

where ~ 1, ~'~ = oh = 1 ; S~ and  82 conta in  n + 2 r  points.  
We can i l lus t ra te  Th. 10 by choosing pa r t i cu la r  

examples  of (15). 

(i) n = 2 ,  r= l"  S~=0, a, ~-+a, ½" 

s . ,=o ,  ¼+a, ½, ~+a. 

,,~ % (0, a, ¼, ½+a) ,  this  Since $1 ( O , a , ~ + a , ~ ) ,  and  ~.  
pa i r  is the  p a i r / / 4 .  

(ii) W h e n  n 2 4, the  qt can t ake  on a t  least  two 
dis t inc t  sets of values ,  e.g. n = 5 ,  r =  1" 

(a) qt =0,  1 
$ 1 = 0 ,  a, 1 / 1 0 + a ,  1/5, 2/5, 3/5, 4/5 } = H~,) 
So=() ,  a, 1/5, 2/5, 3/5, 4/5, 9 / 1 0 + a  

(b) qt = 0 ,  3 

S ~ = 0 ,  a, 1/5, 3 / 1 0 + a ,  2/5, 3/5, 4/,5 | 

$ 2 = 0 ,  a, 1/5, 2/5, 3/5, 7 / 1 0 + a ,  4/5 f = H~'2) 

I t  is 
q t  = ( ) ,  
there  
w h e n  
with r 

(iii) 

ev ident  t h a t  for qt=O, 5, $1-$2;  and  tha t  
n - u  is identical  with qt=O, U. When n is even 
are ½n dis t inc t  homomet r i c  pairs  with r = l "  
n is odd there  are ½ ( n - l ) h ( ) m o m e t r i c  pairs 
= l .  

n =  3, r = 2 : one example  is 

S ~ = 0 ,  a, 1 / 1 2 + a ,  l / 6 + a ,  1 / 4 + a ,  1/3, 2 / 3  
$ 2 = 0 ,  a, 1 / 1 2 + a ,  1/3, 2/3, 5 / 6 + a ,  1 1 / 1 2 + a .  

B u t  (15) is not  the  only solution i l lus t ra t ing  Th. 10. 
The only res t r ic t ion on R* was 

R * = O ,  h = 0  (rood n) , 
and  

v • { '~' (o t' exp 2.~ihb, R* = ,  R, . ,  =--Y \~1  s "" 

is a possible solution providing the  (cot,r)" are the  ,s" 
dist.inet s th-roots of uni ty .  The s implest  ease is s = 2r 
for each kind s specified by b~" an example  is 

(iv) n = 3 ,  r =  1" bl :0 ,  b,z=b-a;  
0 < a < l / 6 ,  1 / 3 < b < 1 / 2  

S ~ = 0 ,  a, l / 6 + a ,  I/3, b, 1 /6+b ,  2/3" 

So 0, a b 1/6, 1/3, b , ° / 3 , 5 / 6 + a "  

but  there  can be as m a n y  p a r a m e t e r s  b~ as we wish. 
The condit ion on R* can also be sat isf ied by choosing 
dif ferent  weights  z.~ for the  members  of d i f ferent  sub- 
sets specified by s : z.~ must  be the  same for all member s  
of the  same subset  s; z~ m a y  be i r ra t ional .  

We m a y  also have  s = 2 r ~  for each subset  ,~, where 
the r.,. are dist inct .  An example  is 

(v) n = 3 ,  r~ = 1, r 2=2"  b~ = 0 ,  b . - = b - a "  

t )<a<1/6 ,1 /3<b<5/12  
S ~ = 0 ,  a, 1 / 6 + a ,  1/3, b, 1 /12+b ,  1 / 6 + b ,  

1/4 + b, 2/3" 
$ 2 = 0 ,  a, b -  1/6, b - l / 1 2 ,  1/3, b, 1/12+b, 

2/3, 5,,'6 + a .  

T h e  f a m i l i e s  o f  h . s .  obeying SI  ) ( '~'2, SI~ ' I  ~ S,2,N'2, 
are in m a n y  respects  the  s implest  possible h.s. Pa t t e r -  
son (1944) gave  the  s imple genera l iza t ion  of //4. 

$ I = 0 ,  a, l /2n+a,  1/n, 2/n, . . . ,  ( n -  1)/n 
H ( 1 )  " , ,+"  = $ 2 = 0 ,  a, l '/n, 2/n, . . . ,  . . . ,  (n -1 ) /n ,  

(2n--  l ) / 2 n + a  . 

In  example  (ii) and  Th. 10 we d e m o n s t r a t e d  the 
existence of closely re la ted  pairs  

H (~ i = l  2, ~n* 7t~ 2 ,  ~ " " • , 

where n* = n  for n even and  n * =  n - 1  for n odd. We 
shall show also in a l a te r  pape r  t h a t / / 4  is i tself the  
only pai r  of h.s. of four  points  conta in ing  a var iab le  
pa r ame te r .  I t  will become clear too t h a t  the  H (/) n+.  a r e ,  
to some ex ten t ,  unusua l  in t h a t  t h e y  exis t  for all 
N = ( n + 2 ) .  In  a la ter  paper  we shal] show t h a t  the  
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HI,i{.,_ have an invariancc property which t.akes a 
simpler  form than  tha t  ass<)ciated with any other 
families of h.s. we have so far discovered. It  would be 

interesting to know if any s<)lutions of ,.lg S, =_ ?;.2,'%,, 
,b'l) (N,.,, exist which ave not trivial  generalizations 
,ff (15). 

S o m e  h o m o m e t r i c  m u l t i p l e t s  

Whilst  the condition S,?,'t = S..,S.,. on the relati(m ()f 
,gt)--(,<go has t)roved useful in demonstra t ing the 
structure of certain simple h.s., it. is a restrictive con- 
dition. If the condition is removed we can demonstra te  
the existence of honmmetr ic  r-tuplets related to (15) 
and which seem to be the simplest possil)le hom<)nmtrie 
r-tuplets. 

THEOREM 11" There exist at  least ½n* sets of 
homometric r-tuplets of n + r  points of equal weight. 

As in Th. I 0 we choose R, R~t) + R~">. D D<X) ± p(e). ~--- , L t 2  ~ I t ,  2 w * * 2  • 

with R(1 ') and R~ ') given I,y (10), and R~ '') + R.(_, -') for 
some h. If 

R~'~>=R: R!',"'=R exp 2nihfl" h ~( )  (m(,d n) 
then 

R,./~,  = R+./~_, h m 0 ( rood  n)  . 
And if 

.R1/~,. = R_+/~._,, h _= 0 (rood n)  , 

a possible solution is R=() ,  h =()(m¢)d n), 
If we choose R = R *  exp 2+-'ziha with 

(-) R* = ,~to)~' exp 2,~ihb, 0 < b < 1 

where the o)I ~ form a complete set ()f roots of x.~= !, 
then 

R * = 0 ,  h ,=( ) (mod n); R * = r ,  b= ( ) ( rood  nr) . 

The condition on fl is now only that  

hfl - 0 (rood 1), h - () (rood nr) 
so that  

f l=m/nr ;  m = 0 , 1 ,  . . . , n r - 1 .  

Since R{')=R(2 ') is invar iant  under mult ipl icat ion 1)y 
exp 2.,'zih/n, only r - 1  of these values of m, for which 
m = 1, 2 . . . .  , r -  I, are distinct.  

The expression for the oJt, namely  

~ot = exp 2:niqdnr , 

applies, with qt =-0, 1, . . . ,  ( r - 1 )  (rood r), a complete 
set of residues (rood r). 

The solution analogous to (15) is 

_i_~, ~-h • t, exp 2~iha R1 - ~i + °h  

R., - ~i + 2"m exp 2~ih(a+m/nr)  
\ t = l  , 

in which m can adopt the values I, 2 . . . . .  r - i .  The 
set of sets for which ,rn =(), 1,2 . . . . .  ( r -  I) constitute 
a homometric  r-tuplet of n ,+r  l)(>ints. The s tatement  
in Th. I I tha t  there are at least ~n* homometric  
r-tuplets is best left to the examples l)elow. 

(vi)  n = 2 ,  r = 3 :  

$1 =(), a, l / 6 + a ,  I / 3 + a ,  1/2: 

Se=0,  a, I / 6 + a ,  1/2, 5/6+a" 
Sa=0,  a, l / 2 , 2 i 3 + a ,  5 / 6 + a .  

We shall show in a later paper  that this is the only 
homonmtric tr iplet  of five equal points: and tha t  there 
are no homometric  r-tuplets for r > 2 for sets of four 
equal points or r-tuplets for r > 3 for five equal points. 
Indeed we shall show that  lhere are no homometr ie  
r-tuplets of X equal t)oints for N < r +  2. 

(v i i )  n = 3 ,  r = 3 :  

Si =(), a, l / 9 + a ,  2 / 9 + a ,  1/3, 2:3: 
S,.,.= 0, a, l / 9 + a ,  1/3, 2/3, 8 / 9 + a :  

Sa=0 ,  a, 1 3, 2/3, 7 / 9 + a ,  8 / 9 + a :  
O F  

S, =0 ,  a, l / 9 + a ,  1/3, 5 / 9 + a ,  2~,3; 

S.,=(), a, 1/3, 4 / 9 + a ,  2/3, 8 ! 9 + a :  

Sa=O, 1/3, 1/3+a,  2/3, 7 / 9 + a ,  8 /9+a"  
( ) I '  

S t = 0 ,  a, 2 i 9 + a ,  1/3, 4 / 9 + a ,  2i3. 
$2=0,  1 /9+a ,  1/3, 1 /3+a ,  2/3, 8 / 9 + 0 ;  

$3=0 ,  a, 2 / 9 + a ,  1/3, 2/3, 7 / 9 + a .  

(v i i i )  n=3, r = 4 :  

We give one member  of each of six dist inct  homo- 
metric quadruplets.  The other members  of one quad- 
ruplet  are obtained 1)y shifting S~ 2) bv 1 /nr=l /12  
relative to S(t "-') 

$1 =(), a, 1 /12+a ,  1/6+a,  1/4+a,  1/3, 2/3; 

or $1=0 ,  a, 1 /12+a ,  1 /6+a ,  1/3, 7 /12Ta ,  2/3; 

or $1=0,  a, 1/12+a ,  1 /4+a ,  1/3, l / 2 + a ,  2/3; 

or S,=O,  a, 1/12+a ,  1 /4+a ,  1/3, 2/3, 5 / 6 + a ;  

or S t = 0 ,  a, 1 /6+a ,  1 /4+a ,  1/3, 2/3, 3 / 4 + a ;  

or S , = 0 ,  a, 1 /6+a ,  1/3, 5 /12+a ,  7 /12+a ,  2 /3 .  

There is also a degenerate quadruplet  which reduces 
to the pair 

Sj =0 ,  a, 1 /12+a ,  1/3, l / 2 + a ,  7 /12+a ,  2/3" 

$2=0 ,  a, 1/3, 5 /12+a ,  l / 2 + a ,  2/3, l l / 1 2 + a .  

I t  is evident  tha t  for general a there are at least 
½n* multiplets.  For large n, homometric  mult iplets  
can become very abundant .  Indeed, much of the 
difficulty of the theory of h.s. resides in the enormous 
abundance  of h.s. for N > about  6. Theorems 3, 4, 6, 
7, 8 and 9 together are a prolific source of h.s. That  
they are insufficient in themselves to generate all 
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possihle h.s. from a few subsets  of ver b" few poin ts  
rests on the  following theorem" 

THEOREM 12" If  S=--SIS.,_ is a set of N points  for 
which (z0, z l , . . . ,  zx ~)= ! then,  if the  z~ 1) are the  
weights of N, points  in ,%'1 and  the  z[. 2) are i he weights  
~f N,,. points  in So, 

i . . ~  j ~ )  ~ i • 

For 
.V 1 • 1 '. ( ) _,-1 (_,' z(',) 'v '  

i::0 \ j  "=0 J ,' \kqO zi'2) 

where w is a posit ive integer" and we assume wi thout  
loss of general i ty  tha t  both 

(z(d), -~"  - ( "  ~ 1 ~1 , • • • , * ) , ' t - l / - - - ~  

• . . ~ ~ V2-- I  

From Th. 12 it  follows t h a t  if 

.V--I  .Vl-- I  

"*~ zi is a prime,  p, then  ~ z~. l) 
i = 0  i = 0  

at  least  has  a fac tor  p. 
We m a y  t h ink  of h.s. as hav ing  fac tor  sets (in 

general)  f rom which t hey  can be genera ted  by  Ths.  
3, 4, 6, 7, 8 and 9. We have  not  shown of course t h a t  
these theorems  are the  sole source of h.s. f rom subsets.  
However ,  if S )- ( S '  and  N and  S'  conta in  a common 

factor ,  N--St,_ a )- -( ~q]lS4 ~ St and  

3' 7i I 7~ ,f "~ -~ "f ,StNiNaNa = 8 1 , S I N 4 ~ $ 4  ~ 811 ) . - (  $ 4  o r  kS':} h* ' ~  ,- 4 

(since N:~ ~ N4) p rov id ing  R1 / 0. Bu t  if ,b',So ) ( NaSa 
we canno t  a t  the  m o m e n t  say a n y t h i n g  abou t  the  
re la t ionship  between S,,  S2, Sa and  ,b'4. 

We m a y  t h ink  of h.s. with no factor  sets as "prime 
sets'  I)ut there  is no gua ran tee  t h a t  the  (teeonlposit i tm 
of h.s. into pr ime subsets  is un ique* :  we a l ready  have  

mmiy  eases for which S, N2 = SaN.l. According to Th .3  
not  all factor  stets are h.s. and  not  all 'p r ime '  sets will 
I)e h.s. According to Th.  12 there  is a t  least, one 'pr ime '  
set, associate(1 u ith each pr ime p lint there  are a lmos t  
ce r ta in ly  more 'pr ime '  sets t h a n  primes p fo,' there  is 
ce r ta in ly  more than  one h.s. for which Z'z , :=p for all 
p • 3. 

One might  ask for all pr ime sets sufficient to gener- 
.Y -1 .Vl--I  

at.e all h.s. with '*~' zi <A Z.  If  in such pr ime sets x" z1 = Z t  
i-. 0 i -0 

it is then  reasonable  to d e m a n d  Zt :~ Z for otherwise  
it wouM be necessary  to explore a much  larger range 
of h.s. in order  to f ind a smal ler  one. Even  when Z is 

3"-- 1 

not  a pr ime not  all h.s. with X~zi=Z can be ob- 
i : 0  

. . . . . . . . . . . . . . . . .  

• T h e  f a i l u r e  o f  t h e  s o  c a l l e d  ' F u n d a m e n t a l  T h e o r e i l l '  i s  

common to a large number of number 'fields' in Number 
Theory (H.V, r. 211). 

ra ined  fronl pr ime sets with Zl  < Z, for consider :V= 4 
and  z , := l  for i = 0 ,  . . . ,  3. According to Th. 12 
e i ther  Z l = 4 w  or Zt=:2w'  and  Z,, .=2w". If  now 
Z~, Z., < 4 both  w' and  w" are un i ty ,  but  we show la te r  
t h a t  ne i ther  of the two pairs of h.s. for which N = 4  
and Z = 4  can be gmmrated from two subsets  of two 
points  of equal  weight.  Accordingly  the  h.s. wit.h 
N = 4, Z = 4 can be genera ted  only  bv subsets  for which 
Z t _ - 4 :  it  seems prol)able t h a t  the  h.s. with N = 4 ,  
Z = 4  are in fact  pr ime sets. 

Whi l s t  Ths. 3-9  are a prolific source of h.s. t hey  are 
in some respects too powerful :  it, is not  obvious,  
despi te  possible a rgumen t s  like those of Ths. 10 and  
11, which sets to choose for S1, S,,, Sa or $4 in order  
to ol)tain h.s. with previously  specified character is t ics  
as to n u m b e r  of points,  re la t ive  weights of points ,  etc. 
Nor do these theorems give any  ind ica t ion  whe the r  
t hey  have  genera ted  all possible h.s. with given charac- 
teristics.  Thus  it  seems proper  to adop t  for la ter  work 
a point of view rather different from that of the 
present paper. 

S u m m a r y  

The theorems of this  t)aper are not  rea l ly  sui table  for 
s u m m a r y ;  bu t  as the  syml)olism of the  paper  may  
appear  a l i t t le  formidable  a t  f irst  s ight  it  seems worth-  
while to s ta te  in s imple te rms and  very  rough ly  both  
the conten ts  of the paper  and  the  ideas behind it. 

Hosemann  & Bagehi  (1954) have  a l ready  shown 
t h a t  two homomet r i e  sets of points  can be buil t  up 
from two pairs of subsets in which one set is common 
to each pail' and  one set of one pair  is the enan t iomorph  
of ano the r  in the  other.  However ,  sets so bui l t  from 
sut)sets are not  a lways  honmmet r i e :  t hey  may  I)e 
enant i ( )morphie  or even identical .  Condi t ions  on the 
subsets are given such t h a t  all pairs of sets genera ted  
from the subsets by Hosemann ' s  & Bagchi ' s  me thod  
are genuine ly  homometr ic ,  and  ~eneral izat ions  of thei r  
theorem are given which enable  homomet r i e  sets t¢~ 
lm genera ted  from subsets which are themselves  
homomet r i e  ra ther  t han  ident ica l  or e |mntiomcwphic.  

In  order  to de termi lm all homomet r i c  sets of given 
numbers  of points  of specifMed weights (or s imply  of 
given numbers  of points)  it is neeessary to define wha t  
eoJlsti tutes a sim.lle di.~'ti~g~iskable homomet r i e  pair.  
Pa t t e r son  (1!)44) has a l ready  shown t h a t  pairs of sets 
(.an I)e homomei r i e  over  a com immus range of values 
()f cer tain co-ordinate  parameters ,  and  it seems reason- 
able to call all pMrs differing only in the  choice of the 
values of these paramete rs  the  same homomet r i e  pair.  
I t  is shown also (Lemma 1) t h a t  if two sets are homo- 
metr ic  they  remain  h(mmmetr ie  af ter  t)eing subjected 
to the  same non-s ingular  affine de fo rma t ion ;  and  we 
therefore  tall  all pairs re la ted by non-s ingular  affine 
deformat ions  the same homomet r i c  pair.  From the  
last it  is necessary to abs t rac t  two sets which are 
homomet r i e  to each o ther  bu t  can be ob ta ined  from 
each other' by a non-s ingular  affine deformat ion"  it  is 
clearly necessary to t r ea t  sets so re la ted  as d is t inc t  h.s. 
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The  first  pa r t  of this  paper  is therefore  concerned 
wi th  the  def in i t ion  of a h o m o m c t r i c  set (h.s). The 
second is concerned wi th  the  proof of theorems 
analogous  to t h a t  of Hoscmann  & Bagchi  (1954). 
dus t  as in H o s e m a n n ' s  & Bagchi ' s  original  f()rmulat ion 
of the i r  theorem it is diff icul t  t() e l imina te  the  pos- 
s ib i l i ty  of genera t ing  the  same set or its cnan t i omorph  
from di f ferent  pairs  of sut)sets. I t  is shown, however ,  
t h a t  if the  e ight  p()ssible h.s. which can I)e genera ted  
from two pairs  of subsets  and  the i r  e n a n t i o m o r p h s  do 
not  con ta in  a homonmt r i c  t r ip le t  ccr ta in  very  restric- 
t ive  condi t ions  must  exist  on the  sul)sets. An in- 
ves t iga t ion  of one of these res t r ic t ive  c()nditions leads 
to the  d iscovery  of some in teres t ing  genera l iza t ions  of 
the fami ly  of h.s. g iven for a general  n u m b e r  of points  
by Pa t te r son  (1944). These genera l iza t ions  of I )a t ter  - 
son's  pa i r  of sets arc ex tended  fu r the r  and  include 
families of mul t ip le t s  p rov id ing  the  sets con ta in  five 
or more points .  I t  is diff icul t  to  avoid  the  conclusion 
t h a t  h.s. arc very  a b u n d a n t  when the  n u m b e r  of points  
in the  sets is large and  it is surpr is ing t h a t  so few have  
been repor ted  in practice.  

As an ind ica t ion  for fu r the r  work it  is po in ted  out, 
(Theorem 12) t h a t  not  all h.s. of a large n u m b e r  of 
points  can I)e genera ted  from subsets  con ta in ing  a 
smal ler  to ta l  weight  of points .  Such sets m a y  be 
t h o u g h t  of as hav ing  no factor  sets and  are analogous  
to pr ime numbers  in Numt)er  Theory .  I t  is a ma jo r  
task  in the  t heo ry  of h.s. to calculate  these 'pr ime '  
sets:  but  u n f o r t u n a t e l y  this  task  is l ikely  to prove as 
diff icul t  as a centra l  prol)lem of N u m b e r  T h e o r y - -  
the ca lcula t ion  of pr ime numl)ers.  

The  l i t e ra ture  on h.s. is still  small ,  and  a t  the  sug- 
~esti()n of the  referee I add a c()mn~e,~t on several  
~)ther papers  devo ted  t() h.s. The  results  ol) ta ined I)y 
t )at tcrson ( ! 944) h trgely supersede Pa t t e r son  ( 1.()39a, b). 
l)attcrs()n (1944) htid the  foundati()ns of a me thod  of 
(lircct a t t a c k  on th(,~ de t e rmina t i on  of h.s. for g iven 
N which has I)een ex tended  t)v Garri(lo (1951). Since 
this  me thod  is the one we adop t  in la ter  l)apers of 
this  series, commc, l t  ();l Garri(l()'s l)apev ((;) can mo,'e 
proper ly  I)c ma(te in them.  However,  we may  remark  
t h a t  U's 'necessary and  sufficient  ( .ondilions '  are by 
no means  rig()rously ,~ecessary. I t  ix not  necessary thai, 
two sets 1)e isovect()rial in (; 's sense f()r t hem to I)e 
hom()met r ic I :  they  may  also have  ident ica l  co-or- 
d ina tes  as H()semann & Bagchi  (1(.)54) Fig. 8 show. 

The  exis tence of isovectorial  c()mpanions of any  
par t icu la r  t)oint set is a lways  accomi)anied I)y the  
fai lurc of s t a n d a r d  methods  (e.g. Clastre & Gay,  
195()a, b) for solving the  Pa t t e r son  func t ion  as Garr ido 
(1951) sh()ws. This  is one reason why isovector ia l  sets 
arc not  a serious problem to crys ta lh)graphers  when 
N is small .  One m a y  also r emark  t h a t  sets of the  type  
of HB's Fig. 8 can I)e e l imina ted  when the  weights  
()f the  points  are a priori known.  Bu t  h.s. with even 

I" i.e. the 'non-existence do st ruclurcs isove('torielles' is not 
sufficient for the non-existen('e of h.s. 

the  same co-ordinates  and the same weights exis t ;  e.g. 
consider 

S, =(0 ,  1/6, 1/3, 1/2, 2/3, ,5/6" 8, 6, 4, 2, 7, 9) I 
No=(0,  1/6, i/3, I/2, 2/3, 5/6" 8, 4, 2, 6, 7, 9) [" (16) 

The sets of (16) havc  very  special co-ordinates  and 
it  is cer ta in  t h a t  r e a r r angemen t  of the  z's become 
more diff icult  for more general  sets of co-ordinates.  
Nevertheless ,  there  remains  the poss ibi l i ty  t h a t  par- 
t icular  but  not  so obvious ly  specialized sets of co-or- 
d ina tes  exist  which pe rmi t  r e a r r angemcn t  of the  z's. 
I t  is ce r ta in ly  t rue  t h a t  the  condi t ion  $1 ) ..... ( So. a lways  
restr ic ts  S~ and  $2; but  in the  au tho r ' s  opin ion our  
knowledge of this  res t r ic t ion  is a t  present  insufficient 
for us to conclude wi th  Garr ido t h a t  the  exis tence of 
h.s. necessari ly  'exige des condi t ions  tr~s speciales qui 
seront  remplies  seulcment  dans  des cas par t icul iers ' .  

Ear l ie r  work on h.s. (Menzer, 1928; Pau l ing  & 
Shappel l ,  1930; l?attcrson,  1939a)sugges ted  t h a t  h.s. 
arc nccessariIv confincd to special posi t ions in h ighly  
symmet r ica l  sets, and  later  work (Pa t te rson ,  1944) 
still left  the  suspicion t h a t  specific readi ly  ident i f iable  
posi t ions were necessary (e.g. 3/4, 1/4, l /5  or 1 / 2 -  
or l / N - - i n  one dimension) .  Bu t  even this  last  con- 
d i t ion  is unnecessary :  consider the  7 po in t  per iodic  
h.s. of equal  weight  

S~ =0 ,  a, 5a+4d, 1 /4+Sa+5d,  l ; 4 + 6 a + 5 d ,  
1/2 + 6a + 6d, 3/4 + 3a + 3d ; 

$2=(~, a, l i 4 + a + d ,  l i 4 + 2 a + d ,  l / 4+6a+Sd ,  
l / 2 + 6 a + 6 d ,  3 / 4 + 3 a + 3 d ;  

and  try." (say) a = l 21100, d =  ] 3/100. 

For  these reasons an a t t a c k  on h.s. I)y considera t ion 
of special points  and  symmetr ies  (Pa t te rson ,  1939a: 
Menzer, 1(.)4.()), ()f great  in teres t  in itself, is l ikely to be 
too restr icted.  S y m n l c t r y  is a res t r ic t ive  condi t ion  on 
h.s.; e.g. the  sets 114 of (8) are h.s. in pm if, and  only 
if, ( / = l / 8 ;  an(l we show la ter  t h a t  these h.s. are the  
only h.s. of 4 points  of equal  weight  in pro. If  S is 
a h.s. with A'=PQ, the condi t ion t h a t  S conta ins  
1 ) sets ()f Q r, quivalent points  in t roduces  a t  most  
P ( Q - 1 )  rchtii()ns I)etween each of the  N weights  and  
X -  I co-()rdinates. But  scts with di f ferent  symmet r ies  
can be hom()mctr ic  (Garri(lo, 1(.)51; H o s e m a n n  & 
Bagchi,  1954) and  it  is t)r()l)ablc t h a t  the  requi rement  
of P sets of Q equ iva len t  t)oints reduces the  to ta l  
numl)cr  of pa ramete r s  t)y less t han  2P(Q-1) ."  i" 

There  can cer ta in ly  I)e more h.s. with P sets of 
Q( > l) equ iva len t  points  t h a n  with P t)oints, for e.g. 
there  are n() h.s. ()f 2 points  in p l  lint there  is one in 

. . . . . . . . . . . .  

t The evidence is still inadequate. We suggest later that 
h.s. with no syInmetry contain at nlost z¥--3 co-ordinate 
parameters and (when N>  5) N--2 weight parameters: in 
T~, one and only one pair of h.s. (and theso with only one co- 
ordinate paI'atnetcr) exists for N = 24. The set 1-I 4 in Idl has 
one co-ordinate parameter and in general three weight part~- 
meters: in Om with a =  ~ there are no co-ordinate and two 
weight paranleters. 
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Om with 2 sets of 2 equivalent  points. Thus when P 
is the number  of sets of equivalent  points, increasing 
P to P + I  probably increases the numbcr  of h.s. 
more rapidly than  does the increase of N to N + 1 in 
sets of no symmet ry ;  and it is even possible tha t  the 
number  of h.s. for given N is asymptot ica l ly  inde- 
pendent  of symmetry .  

Nevertheless,  high symmet ry  imposes a severe re- 
striction on h.s. with small P as the existence of 

T h -  la3 apparen t ly  only one pair of h.s. for N = 2 4  in : 
shows (Pauling & Shappell,  1930; Menzer, 1949; 
Garrido,  1951): as a second example we may  add 
here tha t  there are no h.s. for N = 8 in P21/c (Bullough, 
1957). The fact  tha t  h.s. were first discovered in highly 
symmetr ica l  sets is evidence not tha t  h.s. are asso- 
ciated with high symmet ry  but  tha t  h.s. become 
a b u n d a n t  when N is large. 

Menzer's (1949) conclusion tha t  the introduction of 
a toms of different weight in systems of high symmet ry  
reduces the number  of h.s. below the number  for one 
set, of equivalent  points is misleading for it rclies on 
the abili ty to distinguish between peak shapes as 
well as peak weights. In  general the condition z!0= 
z~ e)=z for all i =  l, . . . ,  N members  of two point sets 
restricts h.s., and homometric  pairs with this proper ty  
are a sut)class of the more general class of homometr ic  
pairs without  it. 

From the evidence at  prescnt available the author  
cannot  agree with Menzcr (1949) and Garrido (1951) 
tha t  h.s. are necessarily rare al though homometr ic  
a l ternat ives  are fairly easy to detect when N is small. 
I t  is by no means obvious tha t  this will continue to be 
so when N ~ 30 (say): the number  of h.s. is probably  
much smallcr than  the number  of possible sets; but  it 
offers small consolation to crystal lographers tha t  the 
number  of h.s. is probably "enumerable'  (in the tech- 
nical sense, i.e. it has the cardinal number  of the 
integers; because h.s. exist for a continuous range of 
coordinate parameters ,  the numl)er of these sets is not 
enumerable) whilst the number  of possible sets has the 

number  of the continuum. If  vector point  sets are given 
with a small error in the vector co-ordinates it seems 
probable t ha t  for large enough N there will a lways 
exist a pair  of h.s. with a vector set within the error 
of tha t  of the given set. For this reason a real upper  
limit probably  exists on the usefulness of the Pat ter -  
son function (or of X- ray  da t a  unsuppor ted  by other  
evidence)- -a l though this limit is probably  beyond the 
point where overlap of finite I)cak widths a l ready 
restricts the use of tha t  function. In  this series of 
papers we investigate h.s. as a problem of interest  in 
its own r ight ;  but a reliable est imate of the importance 
of h.s. to crystal lographers can only be obtained from 
greater  knowledge of the pr()i)ertics of h.s. 

[ am indebted to the Universi ty of Leeds for a 
Fellowship during the tenure of which the bulk of this 
work was done. I am also indebted to the British 
Rayon  Research Association for facilities to complete 
this paper.  
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